Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Positron annihilation spectroscopy of chain-end-functionalized polystyrenes with definite numbers of benzyl alcohol and perfluorooctyl groups

Mahmoud, Kamal Reyad; El-Shehawy, Ashraf; Atta, Hoda

Downloads: 1
Views: 209


A series of well-defined chain-end-functionalized polystyrenes with a definite number of benzyl alcohol and perfluorooctyl groups [PS(BnOH)n & PS(BnORf)n, respectively] linearly aligned in a double line at the chain-ends were prepared and investigated using XRD, SEM, PALS and DBAR spectroscopy. XRD studies showed that PS(BnOH)n are crystalline and the degree of crystallinity increases with increasing the number of benzyl alcohol functionalities, while XRD pattern of PS(BnORf)n revealed that incorporating perfluorooctyl groups resulting in some fractions of polystyrene chains that were intercalated or broken between the interlayer spacing. PALS measurements yielded three lifetime components and the formation probabilities as well as lifetime of ortho-positronium in polymer series were found to be dependent on the chain-end polymer structure. DBAR measurements suggested that only one type of defect is present in the polymer samples.


benzyl alcohol and perfluorooctyl groups, hyperbranched polymers, chain-end-functionalized polystyrene, doppler broadening, free volume, positron annihilation.


1 Paleos, C. M., Tsiourvas, D., Sideratou, Z., & Tziveleka, L.-A. (2010). Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opinion on Drug Delivery7(12), 1387-1398. http://dx.doi.org/10.1517/17425247.2010.534981. PMid:21080860. 

2 Yates, C. R., & Hayes, W. (2004). Synthesis and applications of hyperbranched polymers. European Polymer Journal40(7), 1257-1281. http://dx.doi.org/10.1016/j.eurpolymj.2004.02.007

3 Jin, H., Huang, W., Zhu, X., Zhou, Y., & Yan, D. (2012). Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chemical Society Reviews41(18), 5986-5997. http://dx.doi.org/10.1039/c2cs35130g. PMid:22797315.

4 Zheng, Y., Li, S., Weng, Z., & Gao, C. (2015). Hyperbranched polymers: advances from synthesis to applications. Chemical Society Reviews44(12), 4091-4130. http://dx.doi.org/10.1039/C4CS00528G. PMid:25902871.

5 Bruchmann, B., & Voit, B. (2011). Applications of Hyperbranched Polymers in Coatings, as Additives, and in Nanotechnology. In: Yan D., Gao C. & Frey H. Hyperbranched Polymers: Synthesis, properties, and applications (pp. 415-440). Hoboken, NJ: John Wiley & Sons, Inc. http://dx.doi.org/10.1002/9780470929001.ch16

6 Jikei, M., & Kakimoto, M.-A. (2001). Hyperbranched aromatic polyamides prepared by direct polycondensation. High Performance Polymers13(2), S33-S43. http://dx.doi.org/10.1088/0954-0083/13/2/304.

7 Malmström, E., & Hult, A. (1997). Hyperbranched polymers. Journal of Macromolecular Science, Part C.37(3), 555-579. http://dx.doi.org/10.1080/15321799708018375

8 Bolton, D. H., & Wooley, K. L. (2002). Hyperbranched aryl polycarbonates derived from A2B monomers versus AB2 monomers. Journal of Polymer Science. Part A, Polymer Chemistry40(7), 823-835. http://dx.doi.org/10.1002/pola.10167

9 Jean, Y. C., Mallon, P. E., & Schrader, D. M. (2003). Principles and Applications of Positron and Positronium Chemistry. In Y. C. Jean, P. E. Mallon & D. M. Schrader (Eds.) Introduction to positron and positronium chemistry (pp. 1-15). USA: World Scientific Publishing Co Pte Ltd. http://dx.doi.org/10.1142/9789812775610_0001

10 MacKenzie, I. K., Eady, J. A., & Gingerich, R. R. (1970). The interaction between positrons and dislocations in copper and in an aluminum alloy. Physics Letters. [Part A]33(5), 279-280. http://dx.doi.org/10.1016/0375-9601(70)90138-6

11 López-Castañares, R., Olea-Cardoso, O., Vázquez-Moreno, F., Lizama-Soberanis, B., Camps-Carvajal, E., Angeles-Anguiano, E., & Castaño, V. (2002). Positron annihilation for characterizing polymeric materials. Bulgarian Journal of Physics29(3-4), 155-178. 

12 Gong, W., Mai, Y., Zhou, Y., Qi, N., Wang, B., & Yan, D. (2005). Effect of the degree of branching on atomic-scale free volume in hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane]. A positron study. Macromolecules38(23), 9644-9649. http://dx.doi.org/10.1021/ma051026j

13 Wang, H. M., Chen, Z., Wang, P. F., & Wang, S. J. (2009). The Influence of acrylic acid groups on the microstructure of HDPE/PS/clay system studied by positron annihilation. Materials Science Forum607(3), 88-90. http://dx.doi.org/10.4028/www.scientific.net/MSF.607.88

14 Kwak, S. Y., He, C., Suzuki, T., & Lee, S. H. (2004). Effect of dendritic architecture on localized free volume of poly(ether ketone)s as probed by positron annihilation spectroscopy. Journal of Polymer Science. Part A, Polymer Chemistry42(15), 3853-3859. http://dx.doi.org/10.1002/pola.20222

15 Ito, K., Ujihira, Y., Yamashita, T., & Horie, K. (1999). Change in free volume during volume phase transition of poly(N-isopropylacrylamide) gel as studied by positron annihilation lifetimes: Temperature dependence. Polymer40(15), 4315-4323. http://dx.doi.org/10.1016/S0032-3861(98)00657-0

16 Ribeiro, E., Silva, M. E. S., Machado, J. C., Mano, V., & Silva, G. G. (2003). Positron annihilation and differential scanning calorimetry studies of polyacrylamide and poly(dimethylacrylamide)/poly(ethylene glycol) blends. Journal of Polymer Science. Part B, Polymer Physics41(13), 1493-1500. http://dx.doi.org/10.1002/polb.10490

17 El-meniawi, M. A. H., Mahmoud, K. R., & Megahed, M. (2016). Positron annihilation spectroscopy and mechanical properties studies for epoxy matrices reinforced with different nanoparticles. Journal of Polymer Research23(9), 181-192. http://dx.doi.org/10.1007/s10965-016-1074-6

18 Mahmoud, K. R., Khodair, A. I., & Shaban, S. Y. (2015). Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation. Applied Radiation and Isotopes105, 303-307. http://dx.doi.org/10.1016/j.apradiso.2015.07.002. PMid:26272166. 

19 Shaban, S. Y., Mahmoud, K. R., & Sharshar, T. (2013). Positron annihilation studies of bio-related N2S2-tetradentate ligands and their zinc complexes. Radiation Physics and Chemistry82, 12-15. http://dx.doi.org/10.1016/j.radphyschem.2012.09.001

20 Mahmoud, K. R., Refat, M. S., Sharshar, T., Adam, A. M. A., & Manaaa, E.-S. A. (2016). Synthesis of amino acid iodine charge transfer complexes in situ methanolic medium: chemical and physical investigations. Journal of Molecular Liquids222, 1061-1067. http://dx.doi.org/10.1016/j.molliq.2016.07.138

21 Ismail, A. M., Mahmoud, K. R., & Abd-El Salam, M. H. (2015). Electrical conductivity and positron annihilation characteristics of ternary silicone rubber/carbon black/TiB nanocomposites. Polymer Testing48, 37-43. http://dx.doi.org/10.1016/j.polymertesting.2015.09.006

22 Hooz, J., & Gilani, S. S. H. (1968). A rapid, mild procedure for the preparation of alkyl chlorides and bromides. Canadian Journal of Chemistry46(1), 86-87. http://dx.doi.org/10.1139/v68-017

23 Mahmoud, K. R., Al-Sigeny, S., Sharshar, T., & El-Hamshary, H. (2006). Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer. Radiation Physics and Chemistry75(5), 590-595. http://dx.doi.org/10.1016/j.radphyschem.2005.12.037

24 Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment374(2), 235-244. http://dx.doi.org/10.1016/0168-9002(96)00075-7

25 Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chemical Physics63(1-2), 51-58. http://dx.doi.org/10.1016/0301-0104(81)80307-2

26 McGonigle, E. A., Liggat, J. J., Pethrick, R. A., Jenkins, S. D., Daly, J. H., & Hayward, D. (2001). Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films - Dependence on free volume. Polymer42(6), 2413-2426. http://dx.doi.org/10.1016/S0032-3861(00)00615-7

27 Porto, A. O., Silva, G. G., & Magalha, W. F. (1999). Free volume-size dependence on temperature and average molecular-weight in poly(ethylene oxide) determined by positron annihilation lifetime spectroscopy. Journal of Polymer Science. Part B, Polymer Physics37, 219-226. http://dx.doi.org/10.1002/(SICI)1099-0488(19990201)37:3<219::AID-POLB5>3.0.CO;2-I

28 Jerzy Dryzek. (2019). Retrieved in 2019, October 18, from https://www.ifj.edu.pl/~mdryzek 

29 El-Shehawy, A. A., Yokoyama, H., Sugiyama, K., & Hirao, A. (2005). Precise synthesis of novel chain-end-functionalized polystyrenes with a definite number of perfluorooctyl groups and their surface characterization. Macromolecules38(20), 8285-8299. http://dx.doi.org/10.1021/ma050457z.

30 Paul, P. K., Hussain, S. A., Bhattacharjee, D., & Pal, M. (2013). Preparation of polystyrene–clay nanocomposite by solution intercalation technique. Bulletin of Materials Science36(3), 361-366. http://dx.doi.org/10.1007/s12034-013-0498-4

31 Wästlund, C., Eldrup, M., & Maurer, F. H. J. (1998). Interlaboratory comparison of positron and positronium lifetimes in polymers. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms143(4), 575-583. http://dx.doi.org/10.1016/S0168-583X(98)00400-5

32 Tao, S. J. (1972). Positronium annihilation in molecular substances. The Journal of Chemical Physics56(11), 5499-5510. http://dx.doi.org/10.1063/1.1677067

33 Ito, Y. (1988). Vacancy Spectroscopy of polymers using positronium. In D. M. Schrader & Y. C. Jean (Eds.), Positron and positronium chemistry (pp. 334-354). Elsevier Science: Amsterdam. https://doi.org/10.1021/bk-1998-0710.ch023

34 Krause-Rehberg, R., & Leipner, H. S. (1999). Positron annihilation in semiconductors: Defect Studies (Springer Series in Solid-State Sciences). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-662-03893-2

5eb2f0af0e8825a32fd76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections