Positron annihilation spectroscopy of chain-end-functionalized polystyrenes with definite numbers of benzyl alcohol and perfluorooctyl groups
Mahmoud, Kamal Reyad; El-Shehawy, Ashraf; Atta, Hoda
Abstract
Keywords
References
1 Paleos, C. M., Tsiourvas, D., Sideratou, Z., & Tziveleka, L.-A. (2010). Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opinion on Drug Delivery, 7(12), 1387-1398. http://dx.doi.org/10.1517/17425247.2010.534981. PMid:21080860.
2 Yates, C. R., & Hayes, W. (2004). Synthesis and applications of hyperbranched polymers. European Polymer Journal, 40(7), 1257-1281. http://dx.doi.org/10.1016/j.eurpolymj.2004.02.007.
3 Jin, H., Huang, W., Zhu, X., Zhou, Y., & Yan, D. (2012). Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications. Chemical Society Reviews, 41(18), 5986-5997. http://dx.doi.org/10.1039/c2cs35130g. PMid:22797315.
4 Zheng, Y., Li, S., Weng, Z., & Gao, C. (2015). Hyperbranched polymers: advances from synthesis to applications. Chemical Society Reviews, 44(12), 4091-4130. http://dx.doi.org/10.1039/C4CS00528G. PMid:25902871.
5 Bruchmann, B., & Voit, B. (2011). Applications of Hyperbranched Polymers in Coatings, as Additives, and in Nanotechnology. In: Yan D., Gao C. & Frey H. Hyperbranched Polymers: Synthesis, properties, and applications (pp. 415-440). Hoboken, NJ: John Wiley & Sons, Inc. http://dx.doi.org/10.1002/9780470929001.ch16.
6 Jikei, M., & Kakimoto, M.-A. (2001). Hyperbranched aromatic polyamides prepared by direct polycondensation. High Performance Polymers, 13(2), S33-S43. http://dx.doi.org/10.1088/0954-0083/13/2/304.
7 Malmström, E., & Hult, A. (1997). Hyperbranched polymers. Journal of Macromolecular Science, Part C., 37(3), 555-579. http://dx.doi.org/10.1080/15321799708018375.
8 Bolton, D. H., & Wooley, K. L. (2002). Hyperbranched aryl polycarbonates derived from A2B monomers versus AB2 monomers. Journal of Polymer Science. Part A, Polymer Chemistry, 40(7), 823-835. http://dx.doi.org/10.1002/pola.10167.
9 Jean, Y. C., Mallon, P. E., & Schrader, D. M. (2003). Principles and Applications of Positron and Positronium Chemistry. In Y. C. Jean, P. E. Mallon & D. M. Schrader (Eds.) Introduction to positron and positronium chemistry (pp. 1-15). USA: World Scientific Publishing Co Pte Ltd. http://dx.doi.org/10.1142/9789812775610_0001.
10 MacKenzie, I. K., Eady, J. A., & Gingerich, R. R. (1970). The interaction between positrons and dislocations in copper and in an aluminum alloy. Physics Letters. [Part A], 33(5), 279-280. http://dx.doi.org/10.1016/0375-9601(70)90138-6.
11 López-Castañares, R., Olea-Cardoso, O., Vázquez-Moreno, F., Lizama-Soberanis, B., Camps-Carvajal, E., Angeles-Anguiano, E., & Castaño, V. (2002). Positron annihilation for characterizing polymeric materials. Bulgarian Journal of Physics, 29(3-4), 155-178.
12 Gong, W., Mai, Y., Zhou, Y., Qi, N., Wang, B., & Yan, D. (2005). Effect of the degree of branching on atomic-scale free volume in hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane]. A positron study. Macromolecules, 38(23), 9644-9649. http://dx.doi.org/10.1021/ma051026j.
13 Wang, H. M., Chen, Z., Wang, P. F., & Wang, S. J. (2009). The Influence of acrylic acid groups on the microstructure of HDPE/PS/clay system studied by positron annihilation. Materials Science Forum, 607(3), 88-90. http://dx.doi.org/10.4028/www.scientific.net/MSF.607.88.
14 Kwak, S. Y., He, C., Suzuki, T., & Lee, S. H. (2004). Effect of dendritic architecture on localized free volume of poly(ether ketone)s as probed by positron annihilation spectroscopy. Journal of Polymer Science. Part A, Polymer Chemistry, 42(15), 3853-3859. http://dx.doi.org/10.1002/pola.20222.
15 Ito, K., Ujihira, Y., Yamashita, T., & Horie, K. (1999). Change in free volume during volume phase transition of poly(N-isopropylacrylamide) gel as studied by positron annihilation lifetimes: Temperature dependence. Polymer, 40(15), 4315-4323. http://dx.doi.org/10.1016/S0032-3861(98)00657-0.
16 Ribeiro, E., Silva, M. E. S., Machado, J. C., Mano, V., & Silva, G. G. (2003). Positron annihilation and differential scanning calorimetry studies of polyacrylamide and poly(dimethylacrylamide)/poly(ethylene glycol) blends. Journal of Polymer Science. Part B, Polymer Physics, 41(13), 1493-1500. http://dx.doi.org/10.1002/polb.10490.
17 El-meniawi, M. A. H., Mahmoud, K. R., & Megahed, M. (2016). Positron annihilation spectroscopy and mechanical properties studies for epoxy matrices reinforced with different nanoparticles. Journal of Polymer Research, 23(9), 181-192. http://dx.doi.org/10.1007/s10965-016-1074-6.
18 Mahmoud, K. R., Khodair, A. I., & Shaban, S. Y. (2015). Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation. Applied Radiation and Isotopes, 105, 303-307. http://dx.doi.org/10.1016/j.apradiso.2015.07.002. PMid:26272166.
19 Shaban, S. Y., Mahmoud, K. R., & Sharshar, T. (2013). Positron annihilation studies of bio-related N2S2-tetradentate ligands and their zinc complexes. Radiation Physics and Chemistry, 82, 12-15. http://dx.doi.org/10.1016/j.radphyschem.2012.09.001.
20 Mahmoud, K. R., Refat, M. S., Sharshar, T., Adam, A. M. A., & Manaaa, E.-S. A. (2016). Synthesis of amino acid iodine charge transfer complexes in situ methanolic medium: chemical and physical investigations. Journal of Molecular Liquids, 222, 1061-1067. http://dx.doi.org/10.1016/j.molliq.2016.07.138.
21 Ismail, A. M., Mahmoud, K. R., & Abd-El Salam, M. H. (2015). Electrical conductivity and positron annihilation characteristics of ternary silicone rubber/carbon black/TiB nanocomposites. Polymer Testing, 48, 37-43. http://dx.doi.org/10.1016/j.polymertesting.2015.09.006.
22 Hooz, J., & Gilani, S. S. H. (1968). A rapid, mild procedure for the preparation of alkyl chlorides and bromides. Canadian Journal of Chemistry, 46(1), 86-87. http://dx.doi.org/10.1139/v68-017.
23 Mahmoud, K. R., Al-Sigeny, S., Sharshar, T., & El-Hamshary, H. (2006). Positron annihilation study on free volume of amino acid modified, starch-grafted acrylamide copolymer. Radiation Physics and Chemistry, 75(5), 590-595. http://dx.doi.org/10.1016/j.radphyschem.2005.12.037.
24 Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 374(2), 235-244. http://dx.doi.org/10.1016/0168-9002(96)00075-7.
25 Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chemical Physics, 63(1-2), 51-58. http://dx.doi.org/10.1016/0301-0104(81)80307-2.
26 McGonigle, E. A., Liggat, J. J., Pethrick, R. A., Jenkins, S. D., Daly, J. H., & Hayward, D. (2001). Permeability of N2, Ar, He, O2 and CO2 through biaxially oriented polyester films - Dependence on free volume. Polymer, 42(6), 2413-2426. http://dx.doi.org/10.1016/S0032-3861(00)00615-7.
27 Porto, A. O., Silva, G. G., & Magalha, W. F. (1999). Free volume-size dependence on temperature and average molecular-weight in poly(ethylene oxide) determined by positron annihilation lifetime spectroscopy. Journal of Polymer Science. Part B, Polymer Physics, 37, 219-226. http://dx.doi.org/10.1002/(SICI)1099-0488(19990201)37:3<219::AID-POLB5>3.0.CO;2-I.
28 Jerzy Dryzek. (2019). Retrieved in 2019, October 18, from https://www.ifj.edu.pl/~mdryzek
29 El-Shehawy, A. A., Yokoyama, H., Sugiyama, K., & Hirao, A. (2005). Precise synthesis of novel chain-end-functionalized polystyrenes with a definite number of perfluorooctyl groups and their surface characterization. Macromolecules, 38(20), 8285-8299. http://dx.doi.org/10.1021/ma050457z.
30 Paul, P. K., Hussain, S. A., Bhattacharjee, D., & Pal, M. (2013). Preparation of polystyrene–clay nanocomposite by solution intercalation technique. Bulletin of Materials Science, 36(3), 361-366. http://dx.doi.org/10.1007/s12034-013-0498-4.
31 Wästlund, C., Eldrup, M., & Maurer, F. H. J. (1998). Interlaboratory comparison of positron and positronium lifetimes in polymers. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 143(4), 575-583. http://dx.doi.org/10.1016/S0168-583X(98)00400-5.
32 Tao, S. J. (1972). Positronium annihilation in molecular substances. The Journal of Chemical Physics, 56(11), 5499-5510. http://dx.doi.org/10.1063/1.1677067.
33 Ito, Y. (1988). Vacancy Spectroscopy of polymers using positronium. In D. M. Schrader & Y. C. Jean (Eds.), Positron and positronium chemistry (pp. 334-354). Elsevier Science: Amsterdam. https://doi.org/10.1021/bk-1998-0710.ch023.
34 Krause-Rehberg, R., & Leipner, H. S. (1999). Positron annihilation in semiconductors: Defect Studies (Springer Series in Solid-State Sciences). Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-662-03893-2.