Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and characterization of isoprene oligomers to compare different production chemical processes

Pires, Renata Vieira; Pessoa, Larissa Mota Barros; Sant’Anna, Monica de Almeida de; Fainleib, Alexander; Nunes, Rita de Cassia Pessanha; Lucas, Elizabete Fernandes

Downloads: 0
Views: 20


Three methods to obtain isoprene oligomers were evaluated: chemical degradation of non-vulcanized coagulated natural rubber; chemical degradation of natural rubber latex; and oligomerization of the isoprene monomer. The products were characterized by infrared spectrometry (FTIR), nuclear magnetic resonance (NMR) and size-exclusion chromatography (SEC). All the three processes were efficient and can be controlled in order to obtain products with desired molar mass. Among the degradation processes, the reaction with the non-vulcanized rubber led to the purest products, but this process has the disadvantage of relatively higher catalyst cost of the catalyst. Reactions of isoprene with free radical initiation produced oligomers under specific conditions: low isoprene concentration, low initiator concentration, and xylene as solvent. The results discussed here allows the readers to have a chemistry overview and experimental insights about different chemical routes to obtain isoprene oligomers, compiled together in the same work. It shall be helpful for applied chemistry researches.


natural rubber; degradation; synthesis; isoprene oligomers


1 Magioli, M., Sirqueira, A. S., & Soares, B. G. (2010). The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polymer Testing29(7), 840-848. http://dx.doi.org/10.1016/j.polymertesting.2010.07.008. 

2 Fainleib, A., Grigoryeva, O., Youssef, B., & Saiter, J. M. (2011). Utilization of tire rubber and recycled polyolefins into thermoplastic elastomers. In A. Fainleib, & O. Grigoryeva (Eds.), Recent developments in polymer recycling (pp. 1-46). Kerala: Transword Research Network. 

3 Kébir, N., Campistron, I., Laguerre, A., Pilard, J.-F., & Bunel, C. (2011). New crosslinked polyurethane elastomers with various physical properties from natural rubber derivatives. Journal of Applied Polymer Science122(3), 1677-1687. http://dx.doi.org/10.1002/app.34013. 

4 Roberts, A. D. (1988). Natural rubber science and technology. Oxford: Oxford University Press. 

5 Wang, J., Hamed, G. R., Umetsu, K., & Roland, C. M. (2005). The payne effect in double network elastomers. Rubber Chemistry and Technology78(1), 76-83. http://dx.doi.org/10.5254/1.3547874.

6 Brostow, W., & Lobland, H. E. H. (2017). Materials introduction and applications . New Jersey: John Wiley & Sons.

7 Fainleib, A., Pires, R. V., Lucas, E. F., & Soares, B. G. (2013). Degradation of non-vulcanized natural rubber – renewable resource for fine chemicals used in polymer synthesis. Polimeros: Ciência e Tecnologia23(4), 441-450. http://dx.doi.org/10.4322/polimeros.2013.070. 

8 Hesham, A. E.-L., Mohamed, N. H., Ismail, M. A., & Shoreit, A. A. M. (2015). Degradation of natural rubber latex by new Streptomyces labedae strain ASU-03 isolated from Egyptian soil. Microbiology84(3), 351-358. http://dx.doi.org/10.1134/S0026261715030078. 

9 Polymer Properties Database. (2015). Thermal-oxidative degradation of rubber . Retrieved in 2018, May 30, from http://polymerdatabase.com/polymer%20chemistry/Thermal%20Degradation%20Elastomers.html 

10 Ibrahim, S., Othman, N., & Ismail, H. (2016). Degradation of natural rubber latex. In J. L. Hamilton (Ed.), Natural rubber: properties, behavior and applications (pp. 105-136). New York: Nova Science Publishers. 

11 Odian, G. (2004). Principles of polymerization. New Jersey: John Wiley & Sons. http://dx.doi.org/10.1002/047147875X. 

12 Cowie, J. M. G., & Arrighi, V. (2007). Polymers: chemistry and physics of modern materials. Boca Raton: CRC Press. http://dx.doi.org/10.1201/9781420009873. 

13 Gutiérrez, S., Vargas, S. M., & Tlenkopatchev, M. A. (2004). Computational study of metathesis degradation of rubber. distributions of products for the ethenolysis of 1,4-polyisoprene. Polymer Degradation & Stability83(1), 149-156. http://dx.doi.org/10.1016/S0141-3910(03)00247-7. 

14 Gutiérrez, S., & Tlenkopatchev, M. A. (2011). Metathesis of renewable products: degradation of natural rubber via cross-metathesis with β -pinene using Ru-alkylidene catalysts. Polymer Bulletin66(8), 1029-1038. http://dx.doi.org/10.1007/s00289-010-0330-x. 

15 Grubbs, R. H. (2003). Handbook of metathesis. Weinheim: Wiley-VCH. http://dx.doi.org/10.1002/9783527619481. 

16 Grubbs, R. H. (2007). Realizing the promise of olefin metathesis. Advanced Synthesis & Catalysis349(1-2), 23-24. http://dx.doi.org/10.1002/adsc.200600621. 

17 Gillier-Ritoit, S., Reyx, D., Campistron, I., Laguerre, A., & Pal Singh, R. (2003). Telechelic cis-1,4-oligoisoprenes through the selective oxidolysis of epoxidized monomer units and polyisoprenic monomer units in cis-1,4-polyisoprenes. Journal of Applied Polymer Science87(1), 42-46. http://dx.doi.org/10.1002/app.11661. 

18 Phinyocheep, P., Phetphaisit, C. W., Derouet, D., Campistron, I., & Brosse, J. C. (2005). Chemical degradation of epoxidized natural rubber using periodic acid: preparation of epoxidized liquid natural rubber. Journal of Applied Polymer Science95(1), 6-15. http://dx.doi.org/10.1002/app.20812. 

19 Pilard, J. F., Saetung, A., Rungvichaniwat, A., Campistron, I., Klinpituksa, P., Laguerre, A., Phinyocheep, P., & Doutres, O. (2010). Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber. Journal of Applied Polymer Science117(2), 1279-1289. http://dx.doi.org/10.1002/app.31601. 

20 Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New Jersey: John Wiley & Sons. 


5db041f10e8825096a61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections