Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.04320
Polímeros: Ciência e Tecnologia
Original Article

Experimental investigation on stacking sequence of Kevlar and natural fibres/epoxy polymer composites

Murali Banu; Vijaya Ramnath Bindu Madhavan; Dhanashekar Manickam; Chandramohan Devarajan

Downloads: 0
Views: 46

Abstract

This paper investigates the stacking sequence of combined natural and synthetic fibres reinforced epoxy composites for better mechanical properties. The hybrid composites fabricated using vacuum assisted compression molding process with the natural and synthetic fibres layered in three different sequences such as type I, type II and type III where the synthetic fibers were placed alternatively. The ultimate tensile strength of composite type III was increased by 12% and 30% when compared to composite type I and type II respectively. The flexural test results showed that composite type III have better flexural strength 223 MPa which is 13% and 11% greater than composite type I and type II respectively. Overall, it can be declared that the composite type III shows better tensile, and flexural properties i.e., the composite with aloe vera and palmyra palm fibres have better wettability with the matrix when compared to bamboo fibre.

 

Keywords

aloe vera fibre, bamboo fibre, epoxy resin, Kevlar fibre, palmyra palm fibre

References

1 Jeyapragash, R., Srinivasan, V., & Sathiyamurthy, S. (2019). Mechanical properties of natural fiber/particulate reinforced epoxy composites: a review of the literature. Materials Today: Proceedings, 22(3), 1223-1227. http://dx.doi.org/10.1016/j.matpr.2019.06.655.

2 Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, 243947. http://dx.doi.org/10.1155/2015/243947.

3 Saba, N., Jawaid, M., Hakeem, K., Paridah, M., Khalina, A., & Alothman, O. (2015). Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renewable & Sustainable Energy Reviews, 42, 446-459. http://dx.doi.org/10.1016/j.rser.2014.10.029.

4 Saba, N., Jawaid, M., Paridah, M., & Al-othman, O. (2016). A review on flammability of epoxy polymer, cellulosic and non‐cellulosic fiber reinforced epoxy composites. Polymers for Advanced Technologies, 27(5), 577-590. http://dx.doi.org/10.1002/pat.3739.

5 Elanchezhian, C., Vijaya Ramnath, B., Ramakrishnan, G., Rajendrakumar, M., Naveenkumar, V., & Saravanakumar, M. K. (2018). Review on mechanical properties of natural fiber composites. Materials Today: Proceedings, 5, 1785-1790. http://dx.doi.org/10.1016/j.matpr.2017.11.276.

6 Vijaya Ramnath, B., Elanchezhian, C., Nirmal, P. V., Prem Kumar, G., Santhosh Kumar, V., Karthick, S., Rajesh, S., & Suresh, K. (2014). Experimental investigation of mechanical behavior of Jute-Flax based glass fiber reinforced composite. Fibers and Polymers, 15(6), 1251-1262. http://dx.doi.org/10.1007/s12221-014-1251-3.

7 Vijaya Ramnath, B., Manickavasagam, V. M., Elanchezhian, C., Vinodh Krishna, C., Karthik, S., & Saravanan, K. (2014). Determination of mechanical properties of intra-layer abaca-jute-glass fiber reinforced composite. Materials & Design, 60, 643-652. http://dx.doi.org/10.1016/j.matdes.2014.03.061.

8 Reddy, A. C. (2015). Evaluation of curing process for kevlar 49-epoxy composites by mechanical characterization designed for brake liners. International Journal of Scientific Research, 4, 2365-2371. Retrieved in 2020, June 24, from https://www.ijsr.net/archive/v4i4/SUB153699.pdf

9 Chandramohan, D., & Bharanichandar, J. (2013). Natural fiber reinforced polymer composites for automobile accessories. American Journal of Environmental Sciences, 9(6), 494-504. http://dx.doi.org/10.3844/ajessp.2013.494.504.

10 Srinivasan, V. S., Rajendra Boopathy, S., Sangeetha, D., & Vijaya Ramnath, B. (2014). Evaluation of mechanical and thermal properties of banana-flax based natural fibre composite. Materials & Design, 60, 620-627. http://dx.doi.org/10.1016/j.matdes.2014.03.014.

11 Vijaya Ramnath, B., Rajesh, S., Elanchezhian, C., Santosh Shankar, A., Pithchai Pandian, S., Vickneshwaran, S., & Sundar Rajan, R. (2016). Investigation on mechanical behaviour of twisted natural fiber hybrid composite fabricated by vacuum assisted compression molding technique. Fibers and Polymers, 17(1), 80-87. http://dx.doi.org/10.1007/s12221-016-5276-7.

12 Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites: a review. Composites. Part B, Engineering, 56, 296-317. http://dx.doi.org/10.1016/j.compositesb.2013.08.014.

13 Aldousiri, B., Alajmi, M., & Shalwan, A. (2013). Mechanical properties of palm fibre reinforced recycled HDPE. Advances in Materials Science and Engineering, 2013, 508179. http://dx.doi.org/10.1155/2013/508179.

14 Das, P. P., & Vijay Chaudhary, V. (2019). Tribological and dynamic mechanical analysis of bio-composites: a review. Materials Today: Proceedings, 25(4), 729-734. http://dx.doi.org/10.1016/j.matpr.2019.08.233.

15 Chaitanya, S., & Singh, I. (2016). Novel Aloe Vera fiber reinforced biodegradable composites: development and characterization. Journal of Reinforced Plastics and Composites, 35(19), 1411-1423. http://dx.doi.org/10.1177/0731684416652739.

16 Sampath, P., & Santhanam, S. K. V. (2019). Effect of moringa and bagasse ash filler particles on basalt/epoxy composites. Polímeros: Ciência e Tecnologia, 29(3), e2019034. http://dx.doi.org/10.1590/0104-1428.01219.

17 Karaduman, Y., Onal, L., & Rawal, A. (2015). Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polymer Composites, 36(12), 2167-2173. http://dx.doi.org/10.1002/pc.23127.

18 Nunes, J. P., Pouzada, A. S., & Bernardo, C. A. (2002). The use of a three-point support flexural test to predict the stiffness of anisotropic composite plates in bending. Polymer Testing, 21(1), 27-33. http://dx.doi.org/10.1016/S0142-9418(01)00040-X.

19 Li, J., Zhang, X., Zhu, J., Yu, Y., & Wang, H. (2020). Structural, chemical, and multi-scale mechanical characterization of waste windmill palm fiber (Trachycarpus fortunei). Journal of Wood Science, 66(1), 8. http://dx.doi.org/10.1186/s10086-020-1851-z.

20 Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction & Building Materials, 106, 149-159. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.075.

21 Gupta, M. K., & Srivastava, R. K. (2016). Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 55(6), 626-642. http://dx.doi.org/10.1080/03602559.2015.1098694.

22 Niranjan, R. R., Junaid Kokan, S., Sathya Narayanan, R., Rajesh, S., Manickavasagam, V. M., & Ramnath, B. V. (2013). Fabrication and Testing of Abaca Fibre Reinforced Epoxy Composites for Automotive Applications. Advanced Materials Research, 718-720, 63-68. http://dx.doi.org/10.4028/www.scientific.net/AMR.718-720.63.

23 Gheith, M. H., Aziz, M. A., Ghori, W., Saba, N., Asim, M., Jawaid, M., & Alothman, O. Y. (2019). Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. Journal of Materials Research and Technology, 8(1), 853-860. http://dx.doi.org/10.1016/j.jmrt.2018.06.013.

24 Li, X. (2004). Physical, chemical, and mechanical properties of bamboo and its utilization potential for fibre board manufacturing (Master’s theses). Louisiana State University and Agricultural and Mechanical College, USA. Retrieved in 2020, June 24, from https://digitalcommons.lsu.edu/gradschool_theses/866

25 Li, S., Zheng, T., Li, Q., Hu, Y., & Wang, B. (2019). Flexural and energy absorption properties of natural-fiber reinforced composites with a novel fabrication technique. Composite Communications, 16, 124-131. http://dx.doi.org/10.1016/j.coco.2019.09.005.

26 Gilchrist, M. D., & Svensson, N. (1995). A fractographic analysis of delamination within multidirectional carbon/epoxy laminates. Composites Science and Technology, 55(2), 195-207. http://dx.doi.org/10.1016/0266-3538(95)00099-2.

27 Xie, X., Zhou, Z., & Yan, Y. (2019). Flexural properties and impact behaviour analysis of bamboo cellulosic fibers filled cement based composites. Construction & Building Materials, 220, 403-414. http://dx.doi.org/10.1016/j.conbuildmat.2019.06.029.

28 Ahmad, M. A. A., Abdul Majid, M. S., Ridzuan, M. J. M., Mazlee, M. N., & Gibson, A. G. (2018). Dynamic mechanical analysis and effects of moisture on mechanical properties of interwoven hemp/polyethylene terephthalate (PET) hybrid composites. Construction & Building Materials, 179, 265-276. http://dx.doi.org/10.1016/j.conbuildmat.2018.05.227.

29 Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Construction & Building Materials, 124, 133-138. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.059.

30 Shanmugam, D., & Thiruchitrambalam, M. (2013). Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Materials & Design, 50, 533-542. http://dx.doi.org/10.1016/j.matdes.2013.03.048.

31 Ornaghi, H. L., Jr., Silva, H. S. P., Zattera, A. J., & Amico, S. C. (2011). Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites. Materials Science and Engineering A, 528(24), 7285-7289. http://dx.doi.org/10.1016/j.msea.2011.05.078.

32 Dan-Mallam, Y., Hong, T. W., & Abdul Majid, M. S. (2015). Mechanical characterization and water absorption behaviour of interwoven Kenaf/PET fibre reinforced epoxy hybrid composite. International Journal of Polymer Science, 2015, 371958. http://dx.doi.org/10.1155/2015/371958.

33 Ramesh, M., Palanikumar, K., & Hemachandra Reddy, K. (2017). Plant fibre based bio-composites: sustainable and renewable green materials. Renewable & Sustainable Energy Reviews, 79, 558-584. http://dx.doi.org/10.1016/j.rser.2017.05.094.

34 Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Abdul Majid, M. S. (2019). Analysis of dynamic mechanical, low-velocity impact and compression after impact behaviour of benzoyl treated sugar palm/glass/epoxy composites. Composite Structures, 226, 111308. http://dx.doi.org/10.1016/j.compstruct.2019.111308.

35 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. http://dx.doi.org/10.1038/nmeth.2019. PMid:22743772.

36 Dhanashekar, M., & Kumar, V. S. (2018). Tribological behaviour of squeeze cast AL-SI7MG/SIC/GR hybrid composites. Journal of the Balkan Tribological Association, 24(1), 106-121. Retrieved in 2020, June 24, from https://scibulcom.net/en/article/HuylZtXN2S7ndz9HQyTb

37 Arthanarieswaran, V. P., Kumaravel, A., & Kathirselvam, M. (2014). Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: influence of glass fiber hybridization. Materials & Design, 64, 194-202. http://dx.doi.org/10.1016/j.matdes.2014.07.058.
 

609d1d71a95395171c49ebd4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections