Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Physicochemical characterization, drug release and mechanical analysis of ibuprofen-loaded uhmwpe for orthopedic applications

Loise Silveira da Silva; Izabelle de Mello Gindri; Gean Vitor Salmoria; Carlos Rodrigo de Mello Roesler

Downloads: 0
Views: 39


In this study, the preparation of a novel functional material for orthopedic implants using compression molding was investigated. The new functional material is envisioned to avoid inflammatory reactions in vivo after prosthesis implantation. Ibuprofen-loaded UHMWPE samples were prepared in two concentrations (3% and 5%) and samples were characterized in terms of physicochemical and mechanical properties. In addition, the drug-release profile was investigated. The manufacturing process resulted in a homogeneous polymer matrix with homogeneous drug dispersion. The addition of ibuprofen had a minor effect on physicochemical properties but a more significant influence on the mechanical behavior of the specimens was observed. Drug release was demonstrated and overall the results obtained showed a positive outcome with regard to the intended use. The properties analyzed remained within an acceptable range for medical application and the drug-release profile obtained for the material developed shows promise for its use as an anti-inflammatory system.


UHMWPE, ibuprofen, biomaterial, drug delivery, orthopedic implants, material characterization


1 Kurtz, S. M., & Kurtz, S. M. (2004). Chapter 8 – The clinical performance of UHMWPE in knee replacements. In S. M. Kurtz (Ed.), The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement (pp. 151-188). Cambridge: Academic Press. https://doi.org/10.1016/B978-012429851-4/50009-7.

2 Kurtz, S. M., & Kurtz, S. M. (2004). Chapter 7 – The origins and adaptations of UHMWPE for knee replacements. In S. M. Kurtz (Ed.), The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement (pp. 123-150). Cambridge: Academic Press. https://doi.org/10.1016/B978-012429851-4/50008-5.

3 Carr, B. C., & Goswami, T. (2009). Knee implants - review of models and biomechanics. Materials & Design, 30(2), 398-413. http://dx.doi.org/10.1016/j.matdes.2008.03.032.

4 Bracco, P., Bellare, A., Bistolfi, A., & Affatato, S. (2017). Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A Review. Materials (Basel), 10(7), 791. http://dx.doi.org/10.3390/ma10070791. PMid:28773153.

5 Manoj Kumar, R., Gupta, P., Sharma, S. K., Mittal, A., Shekhar, M., Kumar, V., Manoj Kumar, B. V., Roy, P., & Lahiri, D. (2017). Sustained drug release from surface modified UHMWPE for acetabular cup lining in total hip implant. Materials Science and Engineering C, 77, 649-661. http://dx.doi.org/10.1016/j.msec.2017.03.221. PMid:28532076.

6 Nabeshima, A., Pajarinen, J., Lin, T., Jiang, X., Gibon, E., Córdova, L. A., Loi, F., Lu, L., Jämsen, E., Egashira, K., Yang, F., Yao, Z., & Goodman, S. B. (2017). Mutant CCL2 protein coating mitigates wear particle-induced bone loss in a murine continuous polyethylene infusion model. Biomaterials, 117, 1-9. http://dx.doi.org/10.1016/j.biomaterials.2016.11.039. PMid:27918885.

7 Topolovec, M., Cör, A., & Milošev, I. (2014). Metal-on-metal vs. metal-on-polyethylene total hip arthroplasty tribological evaluation of retrieved components and periprosthetic tissue. Journal of the Mechanical Behavior of Biomedical Materials, 34, 243-252. http://dx.doi.org/10.1016/j.jmbbm.2014.02.018. PMid:24608233.

8 Steinbeck, M. J., & Veruva, S. Y. (2016). Pathophysiologic reactions to UHMWPE wear particles. In In S. M. Kurtz (Ed.), UHMWPE biomaterials handbook ultra high molecular weight polyethylene in total joint replacement and medical devices (pp. 506-530). USA: Elsevier. http://dx.doi.org/10.1016/B978-0-323-35401-1.00028-4

9 Purdue, P. E., Koulouvaris, P., Potter, H. G., Nestor, B. J., & Sculco, T. P. (2007). The cellular and molecular biology of periprosthetic osteolysis. Clinical Orthopaedics and Related Research, 454, 251-261. http://dx.doi.org/10.1097/01.blo.0000238813.95035.1b. PMid:16980902.

10 Bayliss, L. E., Culliford, D., Monk, A. P., Glyn-Jones, S., Prieto-Alhambra, D., Judge, A., Cooper, C., Carr, A. J., Arden, N. K., Beard, D. J., & Price, A. J. (2017). The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet, 389(10077), 1424-1430. http://dx.doi.org/10.1016/S0140-6736(17)30059-4. PMid:28209371.

11 Huang, Y.-F., Zhang, Z.-C., Xu, J.-Z., Xu, L., Zhong, G.-J., He, B.-X., & Li, Z.-M. (2016). Simultaneously improving wear resistance and mechanical performance of ultrahigh molecular weight polyethylene via cross-linking and structural manipulation. Polymer, 90, 222-231. http://dx.doi.org/10.1016/j.polymer.2016.03.011.

12 Berry, D. J., Bozic, K. J., & Lewallen, D. G. (2016). AJRR Annual Report 2016 (pp. 46). Rosemont, IL: American Academy of Orthopaedic Surgeons (AAOS).

13 Pruitt, L. A. (2005). Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials, 26(8), 905-915. http://dx.doi.org/10.1016/j.biomaterials.2004.03.022. PMid:15353202.

14 Wernle, J. D., Mimnaugh, K. D., Rufner, A. S., Popoola, O. O., Argenson, J.-N., & Kelly, M. (2017). Grafted vitamin-E UHMWPE may increase the durability of posterior stabilized and constrained condylar total knee replacements. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(7), 1789-1798. http://dx.doi.org/10.1002/jbm.b.33710. PMid:27192378.

15 Suhardi, V. J., Bichara, D. A., Kwok, S., Freiberg, A. A., Rubash, H., Malchau, H., Yun, S. H., Muratoglu, O. K., & Oral, E. (2017). A fully functional drug-eluting joint implant. Nature Biomedical Engineering, 1(6), 1-21. http://dx.doi.org/10.1038/s41551-017-0080. PMid:29354321.

16 Gil, D., Grindy, S., Muratoglu, O., Bedair, H., & Oral, E. (2019). Antimicrobial effect of anesthetic-eluting ultra-high molecular weight polyethylene for post-arthroplasty antibacterial prophylaxis. Journal of Orthopaedic Research, 37(4), 981-990. http://dx.doi.org/10.1002/jor.24243. PMid:30737817.

17 Yang, D., Qu, S., Huang, J., Cai, Z., & Zhou, Z. (2012). Characterization of alendronate sodium-loaded UHMWPE for anti-osteolysis in orthopedic applications. Materials Science and Engineering C, 32(2), 83-91. http://dx.doi.org/10.1016/j.msec.2011.09.012.

18 Celebi, D., Guy, R. H., Edler, K. J., & Scott, J. L. (2016). Ibuprofen delivery into and through the skin from novel oxidized cellulose-based gels and conventional topical formulations. International Journal of Pharmaceutics, 514(1), 238-243. http://dx.doi.org/10.1016/j.ijpharm.2016.09.028. PMid:27863667.

19 Salmoria, G. V., Paggi, R. A., Castro, F., Roesler, C. R. M., Moterle, D., & Kanis, L. A. (2016). Development of PCL/ibuprofen tubes for peripheral nerve regeneration. Procedia CIRP, 49, 193-198. http://dx.doi.org/10.1016/j.procir.2015.11.014.

20 Klauss P. (2010). Desenvolvimento de dispositivos poliméricos implantáveis para a liberação de fármaco fabricados por sinterização seletiva a laser [Tese de doutorado]. Programa de Pós-graduação em Ciência e Engenharia dos Materiais, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis.

21 ASTM International. (1980). F648-80: standard specification for ultra-high-molecular-weight polyethylene powder and fabricated form for surgical implants. West Conshohocken: ASTM International.

22 Kurtz, S. M. (2004). The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. Cambridge: Academic Press.

23 Vieira, E. S., Salmoria, G. V., de Mello Gindri, I., & Kanis, L. A. (2018). Preparation of ibuprofen-loaded HDPE tubular devices for application as urinary catheters. Journal of Applied Polymer Science, 135(2), 1-8. http://dx.doi.org/10.1002/app.45661.

24 Manadas, R., Pina, M. E., & Veiga, F. (2002). A dissolução in vitro na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada. Revista Brasileira de Ciência do Solo, 38(4). http://dx.doi.org/10.1590/S1516-93322002000400002.

25 Costa, P. J. C. (2002). Avaliação in vitro da lioequivalência de formulações farmacêuticas. Revista Brasileira de Ciências Farmacêuticas, 38(2), 141-153. http://dx.doi.org/10.1590/S1516-93322002000200003.

6037acf2a953953d805b09b5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections