Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Investigation of TPP-Chitosomes particles structure and stability as encapsulating agent of cholecalciferol

Iida, Aline Sayuri Lima; Luz, Karina Novais; Barros-Alexandrino, Taís Téo; Fávaro-Trindade, Carmen Sílvia; Pinho, Samantha Cristina de; Assis, Odílio Benedito Garrido; Martelli-Tosi, Milena

Downloads: 0
Views: 202


Tripolyphosphate (TPP)-chitosomes were produced aiming at the encapsulation and conservation of vitamin D3. This hybrid system is made of liposomes, vesicles consisting of phospholipid bilayers, surrounded by chitosan wall ionic-crosslinked with TPP. Chitosan concentrations (2 and 4 mg mL-1) were tested and the vitamin stability in aqueous dispersions monitored for 49 days. The results confim that D3 remained stable throughout the analyzed period (49 days), whereas the non-encapsulated vitamin totally degrades after the second week of storage. The particle diameters ranged from 0.1 to 5 μm with good colloidal stability (+22 to +48 mV), and encapsulation efficiency of 97%. Thermal stability was also improved when using the TPP-chitosomes. The protection performed was attributed to the stable interactions conferred by the phospholipids crosslinking with the chitosan amino groups and a formation of a net of hydrogen bonds established amongst the hydroxyl groups of the interacting compounds as revealed by infrared spectroscopy.


liposomes; cholecalciferol; lecithin; encapsulation; vitamin stability.


1 Bouillon, R., Okamura, W. H., & Norman, A. W. (1995). Structure-function-relationships in the vitamin-D endocrine system. Endocrine Reviews16(2), 200-257. http://dx.doi.org/10.1210/edrv-16-2-200. PMid:7781594. 

2 Ross, A. C., Taylor, C. L., Yaktine, A. L., & Del Valle, H. B. (2010). Dietary reference intakes for Calcium and Vitamin D. Washington: National Academy Press. Retrieved in 2019, August 9, from https://www.ncbi.nlm.nih.gov/books/NBK56070/

3 Trang, H. M., Cole, D. E. C., Rubin, L. A., Pierratos, A., Siu, S., & Vieth, R. (1998). Evidence that vitamin D-3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D-2. The American Journal of Clinical Nutrition68(4), 854-858. http://dx.doi.org/10.1093/ajcn/68.4.854. PMid:9771862. 

4 Holick, M. F., & Chen, T. C. (2008). Vitamin D deficiency: a worldwide problem with health consequences. The American Journal of Clinical Nutrition87(4), 1080S-1086S. http://dx.doi.org/10.1093/ajcn/87.4.1080S. PMid:18400738.

5 Calvo, M. S., & Whiting, S. J. (2013). Survey of current vitamin D food fortification practices in the United States and Canada. The Journal of Steroid Biochemistry and Molecular Biology136, 211-213. http://dx.doi.org/10.1016/j.jsbmb.2012.09.034. PMid:23104118. 

6 deMan, J. M. (1999). Principles of food chemistry (3rd ed.). Gaithersburg: Aspen Publishers. http://dx.doi.org/10.1007/978-1-4614-6390-0

7 Paucar, O. C., Tulini, F. L., Thomazini, M., Balieiro, J. C. C., Pallone, E., & Favaro-Trindade, C. S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D-3. Food and Bioproducts Processing100, 344-350. http://dx.doi.org/10.1016/j.fbp.2016.08.006

8 Jannasari, N., Fathi, M., Moshtaghian, S. J., & Abbaspourrad, A. (2019). Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules129, 972-979. http://dx.doi.org/10.1016/j.ijbiomac.2019.02.096. PMid:30779987. 

9 Abbasi, A., Emam-Djomeh, Z., Mousavi, M. A. E., & Davoodi, D. (2014). Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chemistry143, 379-383. http://dx.doi.org/10.1016/j.foodchem.2013.08.018. PMid:24054255. 

10 Luo, Y., Zeng, T., & Wang, Q. (2012). Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. Journal of Agricultural and Food Chemistry60(3), 836-843. http://dx.doi.org/10.1021/jf204194z. PMid:22224939. 

11 Chaves, M. A., Oseliero, P. L., Fo., Jange, C. G., Sinigaglia-Coimbra, R., Oliveira, C. L. P., & Pinho, S. C. (2018). Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids and Surfaces. A, Physicochemical and Engineering Aspects549, 112-121. http://dx.doi.org/10.1016/j.colsurfa.2018.04.018

12 Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: impact on in vitro digestion and bioaccessibility. Food Hydrocolloids83, 153-164. http://dx.doi.org/10.1016/j.foodhyd.2018.04.047

13 Park, S. J., Garcia, C. V., Shin, G. H., & Kim, J. T. (2017). Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry225, 213-219. http://dx.doi.org/10.1016/j.foodchem.2017.01.015. PMid:28193417. 

14 Alavi, S., Haeri, A., & Dadashzadeh, S. (2017). Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydrate Polymers157, 991-1012. http://dx.doi.org/10.1016/j.carbpol.2016.10.063. PMid:27988018.

15 Caddeo, C., Diez-Sales, O., Pons, R., Carbone, C., Ennas, G., Puglisi, G., Fadda, A. M., & Manconi, M. (2016). Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. Journal of Colloid and Interface Science461, 69-78. http://dx.doi.org/10.1016/j.jcis.2015.09.013. PMid:26397912. 

16 Du, H., Yang, X., & Zhai, G. (2014). Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine9(5), 723-740. http://dx.doi.org/10.2217/nnm.14.8. PMid:24827846. 

17 Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Shojaosadati, S. A., Dorkoosh, F. A., & Elsabee, M. Z. (2011). Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry126(3), 935-940. http://dx.doi.org/10.1016/j.foodchem.2010.11.086

18 Britto, D., Moura, M. R., Aouada, F. A., Pinola, F. G., Lundstedt, L. M., Assis, O. B. G., & Mattoso, L. H. C. (2014). Entrapment characteristics of hydrosoluble vitamins loaded into chitosan and N,N,N-trimethyl chitosan nanoparticles. Macromolecular Research22(12), 1261-1267. http://dx.doi.org/10.1007/s13233-014-2176-9

19 Zhou, F., Xu, T., Zhao, Y. J., Song, H. X., Zhang, L. Q., Wu, X. D., & Lu, B. Y. (2018). Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids83, 17-24. http://dx.doi.org/10.1016/j.foodhyd.2018.04.040

20 Makino, K., Yamada, T., Kimura, M., Oka, T., Ohshima, H., & Kondo, T. (1991). Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophysical Chemistry41(2), 175-183. http://dx.doi.org/10.1016/0301-4622(91)80017-L. PMid:1773010.

21 Moore, J., & Cerasoli, E. (2017). Particle Light Scattering Methods and Applications A2 - Lindon, John C. In G. E. Tranter & D. W. Koppenaal (Eds.), Encyclopedia of spectroscopy and spectrometry (3rd ed., pp. 543-553). Oxford: Academic Press. http://dx.doi.org/10.1016/B978-0-12-803224-4.00040-6

22 Gong, G., & Bell, L. N. (2013). Degradation kinetics of rebaudioside A in various buffer solutions. International Journal of Food Science & Technology48(2), 2500-2502. http://dx.doi.org/10.1111/ijfs.12241

23 Scholfield, C. R. (1981). Composition of soybean lecithin. Journal of the American Oil Chemists’ Society58(10), 889-892. http://dx.doi.org/10.1007/BF02659652

24 Martins, C. S., Morgado, D. L., & Assis, O. B. G. (2016). Cashew gum-chitosan blended films: Spectral, mechanical and surface wetting evaluations. Macromolecular Research24(8), 691-697. http://dx.doi.org/10.1007/s13233-016-4103-8

25 Nzai, J. M., & Proctor, A. (1999). Soy lecithin phospholipid determination by fourier transform infrared spectroscopy and the acid digest/arseno-molybdate method: a comparative study. Journal of the American Oil Chemists’ Society76(1), 61-66. http://dx.doi.org/10.1007/s11746-999-0048-9

26 Tantipolphan, R., Rades, T., McQuillan, A. J., & Medlicott, N. J. (2007). Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. International Journal of Pharmaceutics337(1), 40-47. http://dx.doi.org/10.1016/j.ijpharm.2006.12.021. PMid:17240095. 

27 Ding, G.-J., Zhu, Y.-J., Qi, C., Lu, B.-Q., Chen, F., & Wu, J. (2015). Porous hollow microspheres of amorphous calcium phosphate: soybean lecithin templated microwave-assisted hydrothermal synthesis and application in drug delivery. Journal of Materials Chemistry B: Materials for Biology and Medicine3(9), 1823-1830. http://dx.doi.org/10.1039/C4TB01862A

28 Kiani, A., Fathi, M., & Ghasemi, S. M. (2017). Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification. International Journal of Food Properties20(11), 2465-2674. http://dx.doi.org/10.1080/10942912.2016.1240690

29 Othayoth, R., Mathi, P., Bheemanapally, K., Kakarla, L., & Botlagunta, M. (2015). Characterization of vitamin-cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue. Journal of Microencapsulation32(6), 578-588. http://dx.doi.org/10.3109/02652048.2015.1065921. PMid:26218628. 

30 Martins, A. F., Oliveira, D. M., Pereira, A. G. B., Rubira, A. F., & Muniz, E. C. (2012). Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. International Journal of Biological Macromolecules51(5), 1127-1133. http://dx.doi.org/10.1016/j.ijbiomac.2012.08.032. PMid:22975304. 

31 Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules8(8), 2533-2541. http://dx.doi.org/10.1021/bm070014y. PMid:17591747. 

5e8e54da0e8825bf381ad515 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections