Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Nanoscale morphology, structure and fractal study of kefir microbial films grown in natura

Robert S. Matos; Ellen C. M. Gonçalves; Erveton P. Pinto; Gerson A. C. Lopes; Nilson S. Ferreira; Cristiane X. Resende

Downloads: 0
Views: 258


Kefir is a natural probiotic produced by kefir grains fermentation. Biofilms produced from fresh kefir grains in natura were studied for presenting structural characteristics that will be of great interest in the area of regenerative medicine. This work presents a study on the surface of kefir biofilms, obtained by the cultivation of kefir grains in commercial white sugar. Four different films were produced, varying the concentration of sugar. The crystallinity of the biofilms was analyzed and revealed that sugar concentration influences biofilm amorphousness. Morphology showed that the biofilms presented excellent superficial adhesiveness. Fractal parameters were studied and revealed that there was homogeneity in the biofilm microtexture. Both fractal succolarity and surface entropy showed that the degree of water penetration and topographic homogeneity of the biofilms was not influenced by sugar concentration. These results show that kefir biofilms have excellent structural and morphological properties to be used in the biomedical field.


kefir, biofilms, crystallinity, morphology, fractal


1 Mao, A. S., & Mooney, D. J. (2015). Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14452-14459. http://dx.doi.org/10.1073/pnas.1508520112. PMid:26598661.

2 Coma, M. E., Peltzer, M. A., Delgado, J. F., & Salvay, A. G. (2019). Water kefir grains as an innovative source of materials: study of plasticiser content on film properties. European Polymer Journal, 120(109234), 1-9. http://dx.doi.org/10.1016/j.eurpolymj.2019.109234.

3 Matos, R. S., Lopes, G. A. C., Ferreira, N. S., Pinto, E. P., Carvalho, J. C. T., Figueiredo, S. S., Oliveira, A. F., & Zamora, R. R. M. (2018). Superficial characterization of kefir biofilms associated with açaí and cupuaçu extracts. Arabian Journal for Science and Engineering, 43(7), 3371-3379. http://dx.doi.org/10.1007/s13369-017-3024-y.

4 Güzel-Seydim, Z. B., Seydim, A. C., Greene, A. K., & Bodine, A. B. (2000). Determination of organic acids and volatile flavor substances in kefir during fermentation. Journal of Food Composition and Analysis, 13(1), 35-43. http://dx.doi.org/10.1006/jfca.1999.0842.

5 Garrote, G. L., Abraham, A. G., & De Antoni, G. L. (2001). Chemical and microbiological characterization of kefir grains. The Journal of Dairy Research, 68(4), 639-652. http://dx.doi.org/10.1017/S0022029901005210. PMid:11928960.

6 Otles, S., & Cagindi, O. (2003). Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pakistan Journal of Nutrition, 2(2), 54-59. http://dx.doi.org/10.3923/pjn.2003.54.59.

7 Pogačić, T., Šinko, S., Zamberlin, Š., & Samaržija, D. (2013). Microbiota of kefir grains. Mljekarstvo, 63(1), 3-14. http://dx.doi.org/10.3923/pjn.2003.54.59.

8 Radhouani, H., Bicho, D., Gonçalves, C., Maia, F. R., Reis, R. L., & Oliveira, J. M. (2019). Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications. Materials Today Communications, 20(100554), 1-6. http://dx.doi.org/10.1016/j.mtcomm.2019.100554.

9 Radhouani, H., Gonçalves, C., Maia, F. R., Oliveira, J. M., & Reis, R. L. (2018). biological performance of a promising kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. Journal of Materials Science. Materials in Medicine, 29(124), 1-10. http://dx.doi.org/10.1007/s10856-018-6132-7. PMid:30051294.

10 Blandón, L. M., Islan, G. A., Castro, G. R., Noseda, M. D., Thomaz-Soccol, V., & Soccol, C. R. (2016). Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin. Colloids and Surfaces. B, Biointerfaces, 145(1), 706-715. http://dx.doi.org/10.1016/j.colsurfb.2016.05.078. PMid:27289312.

11 Dadashi, S., Boddohi, S., & Soleimani, N. (2019). Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. Journal of Drug Delivery Science and Technology, 52, 979-985. http://dx.doi.org/10.1016/j.jddst.2019.06.012.

12 Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules (Basel, Switzerland), 14(7), 2535-2554. http://dx.doi.org/10.3390/molecules14072535. PMid:19633622.

13 Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1), 187-209. http://dx.doi.org/10.1146/annurev.micro.56.012302.160705. PMid:12142477.

14 Caixeta, D. S., Scarpa, T. H., Brugnera, D. F., Freire, D. O., Alves, E., Abreu, L. R. D., & Piccoli, R. H. (2012). Chemical sanitizers to control biofilms formed by two Pseudomonas species on stainless steel surface. Food Science and Technology (Campinas), 32(1), 142-150. http://dx.doi.org/10.1590/S0101-20612012005000008.

15 Carpentier, B., & Cerf, O. (1993). Biofilms and their consequences, with particular reference to hygiene in the food industry. The Journal of Applied Bacteriology, 75(6), 499-511. http://dx.doi.org/10.1111/j.1365-2672.1993.tb01587.x. PMid:8294303.

16 Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. Lebensmittel-Wissenschaft & Technologie-Food Science and Techonology, 43(4), 573-583. http://dx.doi.org/10.1016/j.lwt.2009.12.008.

17 Oliveira, A. F., Santos, C. B. R., Ferreira, A. M., Bezerra, R. M., Zamora, R. R. M., Cruz, R. A. S., Amado, J. R. R., & Carvalho, J. C. T. (2017). A viability study for the production of biofilms and in silico predictions of major compounds in kefir. Journal of Computational and Theoretical Nanoscience, 14(6), 2915-2926. http://dx.doi.org/10.1166/jctn.2017.6594.

18 Oliveira, A. F., Maciel, A. F., Florentino, A. C., Fernandes, C. P., Bezerra, R. M., Góes, M. B., Salcedo, M. O. C., Zamora, R. R. M., & Carvalho, J. C. T. (2017). Study of kefir biofilm aassociated with hydroethanolic extract of Euterpe oleracea Mart.(aai). African Journal of Microbiological Research, 11(39), 1474-1483. http://dx.doi.org/10.5897/AJMR2017.8622.

19 Mendonça, C. R., Rodrigues, R. S., & Zambiazi, R. C. (2000). Açúcar mascavo em geleiadas de maçã. Ciência Rural, 30(6), 1053-1058. http://dx.doi.org/10.1590/S0103-84782000000600022.

20 Bettani, S. R., Lago, C. E., Faria, D. A. M., Borges, M. T. M. R., & Verruma-Bernardi, M. R. (2014). Avaliação físico-química e sensorial de açúcares orgânicos e convencionais. Revista Brasileira de Produtos Agroindustriais, 16(2), 155-162. http://dx.doi.org/10.15871/1517-8595/rbpa.v16n2p155-162.

21 Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Rheological and structural characterization of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types. International Journal of Biological Macromolecules, 49(4), 814-821. http://dx.doi.org/10.1016/j.ijbiomac.2011.07.018. PMid:21827782.

22 Salcedo, M. O. C., Zamora, R. R. M., & Carvalho, J. C. T. (2016). Estudio fractal de la superficie de la hoja de la especie vegetal copaifera sp. haciendo uso del microscopio de Fuerza Atómica-AFM. Revista ECIPerú, 13(1), 1-7. http://dx.doi.org/10.33017/RevECIPeru2016.0002.

23 Alburquerque, M. P. (2000). Processamento de Imagens: métodos e análises. Rio de Janeiro: Centro Brasileiro de Pesquisas Físicas. Retrieved in 2020, April 4, from http://www.cbpf.br/cat/pdsi/pdf/processamentoimagens.pdf

24 Ştefan, Ţ., Abdolghaderi, S., Pinto, E. P., Matos, R. S., & Salerno, M. (2020). Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surface Engineering, 36(7), 713-719. http://dx.doi.org/10.1080/02670844.2019.1710937.

25 Le Bail, A., Duroy, H., & Fourquet, J. L. (1988). Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447-452. http://dx.doi.org/10.1016/0025-5408(88)90019-0.

26 Carvajal, J. R. (2001). Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter, 26, 12-19.

27 Stern, P. G., & Segerman, E. (1968). On the structure of polypropylene fibres. Polymer, 9, 471-477. http://dx.doi.org/10.1016/0032-3861(68)90057-8.

28 Khulbe, K. C., Feng, C., & Matsuura, T. (2008). synthetic polymeric membranes: characterization by atomic force microscopy. USA: Springer. http://dx.doi.org/10.1007/978-3-540-73994-4.

29 Nosonovsky, M. (2010). Entropy in tribology: in the search for applications. Entropy (Basel, Switzerland), 12(6), 1345-1390. http://dx.doi.org/10.3390/e12061345.

30 Melo, R. H. C., & Conci, A. (2008). Succolarity: defining a method to calculate this fractal measure. In Proceedings of the 15th International Conference on Systems, Signals and Image Processing (pp. 291-294). USA: IEEE. http://dx.doi.org/10.1109/iwssip.2008.4604424.

31 Mandelbrot, B. (1983). The fractal geometry of nature. New York: W. H. Freeman and company. http://dx.doi.org/10.1119/1.13295.

32 Le Bail, A. (2004). Monte carlo indexing with McMaille. Powder Diffraction, 19(3), 249-254. http://dx.doi.org/10.1154/1.1763152.

33 Israelachvili, J. N. (2011). Intermolecular and surface forces. Cambridge: Academic Press.

34 Coutinho, F. M. B., Mello, I. L., & Santa Maria, L. C. (2003). Polietileno: principais tipos, propriedades e aplicações. Polímeros: Ciência e Tecnologia, 13(1), 1-13. http://dx.doi.org/10.1590/S0104-14282003000100005.

35 Ghanbarzadeh, B., & Oromiehi, A. R. (2008). Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43(2), 209-215. http://dx.doi.org/10.1016/j.ijbiomac.2008.05.006. PMid:18619671.

36 Bergo, P., Sobral, P. J. A., & Prison, J. M. J. (2010). Effect of Glycerol on Physical Properties of Cassava Starch Films. Journal of Food Processing and Preservation, 34(s2), 401-410. http://dx.doi.org/10.1111/j.1745-4549.2008.00282.x.

37 Almeida, A. P., Pinto, E. P., Santos, P. G. P., Filho, H. D. F., & Matos, R. S. (2019). Distribution of microorganisms on surface of kefir biofilms associated with açaí extract. Scientia Amazônia, 8(3), 10-18.

38 Kantorsk, K. Z., & Pagani, C. (2007). Influência da rugosidade superficial dos materiais odontológicos na adesão bacteriana: revisão de literatura. Revista Brasileira de Odontologia, 19(3), 325-330. http://dx.doi.org/10.1016/j.ijbiomac.2008.05.006.

39 Pinto, E. P., Tavares, W. S., Matos, R. S., Ferreira, A. M., Menezes, R. P., Costa, M. E. H. M., Souza, T. M., Ferreira, I. M., Sousa, F. F. O., & Zamora, R. (2018). Influence of low and high glycerol concentrations on wettability and flexibility of chitosan biofilms. Quimica Nova, 41(10), 1109-1116. http://dx.doi.org/10.21577/0100-4042.20170287.

40 Dias, P. A., Rosa, J. V., Tejada, T. S., & Timm, C. D. (2016). Propriedades antimicrobianas do kefir. Arquivos do Instituto Biológico, 83(e0762013), 1-5. http://dx.doi.org/10.1590/1808-1657000762013.

41 Bosch, A., Golowczyc, M. A., Abraham, A. G., Garrote, G. L., De Antoni, G. L., & Yantorno, O. (2006). Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy. International Journal of Food Microbiology, 111(3), 280-287. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.05.010. PMid:16860422.

42 Talaro, K. P. E. (2002). Foundations in microbiology. New York: Mc Graw-Hill.

43 Domingues, F. N., Oliveira, M. D. S., Siqueira, G. R., Roth, A. P. T. P., Santos, J., & Mota, D. A. (2011). Estabilidade aeróbia, pH e dinâmica de desenvolvimento de microrganismos da cana-de-açúcar in natura hidrolisada com cal virgem. Revista Brasileira de Zootecnia, 40(4), 715-719. http://dx.doi.org/10.1590/S1516-35982011000400003.

44 Ordóñez, J. A. (2005). Tecnologia de alimentos: componentes dos alimentos e processos. São Paulo: Artmed.

45 Ramírez Granillo, A., Canales, M. G., Espíndola, M. E., Martínez Rivera, M. A., de Lucio, V. M., & Tovar, A. V. (2015). Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC Microbiology, 15, 33. PMid:25880740.

6037b63ea9539553b172daa2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections