Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films

Paula, Marcos; Diego, Ivo; Dionisio, Ronaldo; Vinhas, Glória; Alves, Severino

Downloads: 0
Views: 407


Polycaprolactone (PCL) to which has been added zinc oxide nanoparticles (ZnO NPs) produces nanocomposites (PCL/ZnO NCs). These nanocomposites can be used in biomedical applications and in the food packaging sector. However, for these materials to be used in these applications, they need to be sterilized. For this, gamma irradiation is the most common method. Thus it is important to evaluate the effects of gamma irradiation on the properties of PCL and PCL/ZnO that have been exposed to gamma irradiation. PCL/ZnO NCs films were obtained by solvent casting and exposed to gamma irradiation at 25 kGy and evaluated by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) scanning electron microscopy (SEM) and mechanical properties. Mechanical properties and crystallinity showed marginal variations for the irradiated samples. The results obtained demonstrate that gamma irradiation at 25 kGy, did not cause profound changes in nanocomposite properties.


polycaprolactone; gamma irradiation; nanocomposites; materials properties


1 Lopez-Figueras, L., Navascues, N., & Irusta, S. (2017). Polycaprolactone/mesoporous silica MCM-41 composites prepared by in situ polymerization. Particuology , 30, 135-143. http://dx.doi.org/10.1016/j.partic.2016.05.005. 

2 Souza, G., Santos, A., & Vinhas, G. (2016). Evaluation of the properties poly(3-hidroxybutyrate)/ chitosan blend after radiolytic or thermal sterilization. Polímeros: Ciência e Tecnologia26(4), 352-359. http://dx.doi.org/10.1590/0104-1428.2215. 

3 Casarin, S. A., Agnelli, J. A. M., Malmonge, S. M., & Rosário, F. (2013). Blendas PHB/copoliésteres biodegradáveis: biodegradação em solo. Polímeros: Ciência e Tecnologia23(1), 115-122. http://dx.doi.org/10.1590/S0104-14282013005000003. 

4 Barbanti, S. H., Zavaglia, C. A. C., & Duek, E. A. R. (2005). Polímeros bioreabsorvíveis na engenharia de tecidos. Polímeros: Ciência e Tecnologia , 15(1), 13-21. http://dx.doi.org/10.1590/S0104-14282005000100006. 

5 Borghesi, D. C., Molina, M. F., Guerra, M. A., & Campos, M. G. N. (2016). Biodegradation study of a novel poly-caprolactone-coffee husk composite film. Materials Research , 19(4), 752-758. http://dx.doi.org/10.1590/1980-5373-MR-2015-0586. 

6 Labet, M., & Thielemans, W. (2009). Synthesis of Polycaprolactone: a review. Chemical Society Reviews38(12), 3484-3504. http://dx.doi.org/10.1039/b820162p. PMid:20449064. 

7 Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-Polycaprolactone in the 21st century. Progress in Polymer Science35(10), 1217-1256. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002. 

8 Elen, K., Murariu, M., Peeters, R., Dubois, P., Mullens, J., Hardy, A., & Van Bael, M. K. (2012). Towards high-performance biopackaging: barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers for Advanced Technologies , 23(10), 1422-1428. http://dx.doi.org/10.1002/pat.2062. 

9 Kashanian, S., Harding, F., Irani, Y., Klebe, S., Marshall, K., Loni, A., Canham, L., Fan, D., Williams, K. A., Voelcker, N. H., & Coffer, J. L. (2010). Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomaterialia , 6(9), 3566-3572. http://dx.doi.org/10.1016/j.actbio.2010.03.031. PMid:20350620. 

10 Schlesinger, E., Ciaccio, N., & Desai, T. A. (2015). Polycaprolactone thin-film drug delivery systems: empirical and predictive models for device design. Materials Science and Engineering C57(1), 232-239. http://dx.doi.org/10.1016/j.msec.2015.07.027. PMid:26354259. 

11 Yeong, W. Y., Sudarmadji, N., Yu, H. Y., Chua, C. K., Leong, K. F., Venkatraman, S. S., Boey, Y. C. F., & Tan, L. P. (2010). Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomaterialia6(6), 2028-2034. http://dx.doi.org/10.1016/j.actbio.2009.12.033. PMid:20026436. 

12 Mallakpour, S., & Nouruzi, N. (2016). Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polymer89, 94-101. http://dx.doi.org/10.1016/j.polymer.2016.02.038. 

13 Minata, M. K., Motta, A. C., Barbo, M. L. P., Rincon, M. C., & Duek, E. A. R. (2013). Estudo da Biocompatibilidade da Blenda de Poli(L-ácido láctico)/Policaprolactona-triol. Polímeros: Ciência e Tecnologia23(2), 242-247. http://dx.doi.org/10.4322/polimeros.2013.074. 

14 Hu, W. W., Wu, Y. C., & Hu, Z. C. (2018). The Development of an alginate/polycaprolactone composite scaffold for in situ transfection application. Carbohydrate Polymers , 183, 29-36. http://dx.doi.org/10.1016/j.carbpol.2017.11.030. PMid:29352887. 

15 Mallakpour, S., & Nouruzi, N. (2018). Evaluation of Zno-vitamin B1 nanoparticles on bioactivity and physiochemical properties of the polycaprolactone-based nanocomposites. Polymer-Plastics Technology and Engineering57(1), 46-58. http://dx.doi.org/10.1080/03602559.2017.1300815.

16 Mallakpour, S., & Behranvand, V. (2016). Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. European Polymer Journal84, 377-403. http://dx.doi.org/10.1016/j.eurpolymj.2016.09.028. 

17 Augustine, R., Kalarikkal, N., & Thomas, S. (2016). Effect of ZnO nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. International Journal of Polymeric Biomaterials65(1), 28-37. http://dx.doi.org/10.1080/00914037.2015.1055628. 

18 Lepot, N., Van Bael, M. K., Van den Rul, H., D’Haen, J., Peeters, R., Franco, D., & Mullens, J. (2011). Influence of incorporation of ZnO nanoparticles and biaxial orientation on mechanical and oxygen barrier properties of polypropylene films for food packaging applications. Journal of Applied Polymer Science120(3), 1616-1623. http://dx.doi.org/10.1002/app.33277. 

19 Mallakpour, S., & Barati, A. (2011). Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Progress in Organic Coatings71(4), 391-398. http://dx.doi.org/10.1016/j.porgcoat.2011.04.010. 

20 Augustine, R., Saha, A., Jayachandran, V. P., Thomas, S., & Kalarikkal, N. (2015). Dose dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials64(10), 526-533. http://dx.doi.org/10.1080/00914037.2014.977900. 

21 Silva, W. B., Aquino, K. A. D. S., Vasconcelos, H. M., & Araujo, E. S. (2013). Influence of copper chloride and potassium iodide mixture in poly(vinyl chloride) exposed to gamma irradiation. Polymer Degradation & Stability98(1), 241-245. http://dx.doi.org/10.1016/j.polymdegradstab.2012.10.006. 

22 Cottam, E., Hukins, D. W. L., Lee, K., Hewitt, C., & Jenkins, M. J. (2009). Effect of sterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Medical Engineering & Physics31(2), 221-226. http://dx.doi.org/10.1016/j.medengphy.2008.07.005. PMid:18760952. 

23 Cooke, S. L., & Whittington, A. R. (2016). Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials. Materials Science and Engineering C , 60, 78-83. http://dx.doi.org/10.1016/j.msec.2015.10.089. PMid:26706509. 

24 Dorati, R., Colonna, C., Serra, M., Genta, I., Modena, T., Pavanetto, F., Perugini, P., & Conti, B. (2008). γ-irradiation of PEGd,lPLA and PEG-PLGA multiblock copolymers: I. effect of irradiation doses. American Association of Pharmaceutical Scientists , 9(2), 718-725. PMid:18528761.

25 Oliveira, L. M., Araújo, E. S., & Guedes, S. M. L. (2006). Gamma irradiation effects on poly(hydroxybutyrate). Polymer Degradation & Stability91(9), 2157-2162. http://dx.doi.org/10.1016/j.polymdegradstab.2006.01.008. 

26 Pêgo, A. P., Grijpma, D. W., & Feijen, J. (2003). Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer44(21), 6495-6504. http://dx.doi.org/10.1016/S0032-3861(03)00668-2. 

27 Koenig, M. F., & Huang, S. J. (1995). Biodegradable blends and composites of polycaprolactone and starch derivatives. Polymer36(9), 1877-1882. http://dx.doi.org/10.1016/0032-3861(95)90934-T. 

28 Augustine, R., Malik, H. N., Singhal, D. K., Mukherjee, A., Malakar, D., Kalarikkal, N., & Thomas, S. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research , 21(3), 347-364. http://dx.doi.org/10.1007/s10965-013-0347-6. 

29 Mallakpour, S., & Nouruzi, N. (2016). Modification of morphological, mechanical, optical and thermal properties in polycaprolactone-based nanocomposites by the incorporation of diacid- modified ZnO nanoparticles. Journal of Materials Science , 51(13), 6400-6410. http://dx.doi.org/10.1007/s10853-016-9936-1. 

30 Hong, R. Y., Qian, J. Z., & Cao, J. X. (2006). Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technology163(3), 160-168. http://dx.doi.org/10.1016/j.powtec.2006.01.015. 

5db05f0e0e88252d3b61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections