Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.03916
Polímeros: Ciência e Tecnologia
Review Article

Carbon nanotube buckypaper reinforced polymer composites: a review

Ribeiro, Bruno; Botelho, Edson Cocchieri; Costa, Michelle Leali; Bandeira, Cirlene Fourquet

Downloads: 0
Views: 318

Abstract

This review provides valuable information about the general characteristics, processing conditions and physical properties of carbon nanotube buckypaper (BP) and its polymer composites. Vacuum filtration is the most common technique used for manufacturing BP, since the carbon nanotubes are dispersed in aqueous solution with the aid of surfactant. Previous works have reported that mechanical properties of BP prepared by vacuum filtration technique are relatively weak. On the other hand, the incorporation of polymer materials in those nanostructures revealed a significant improvement in their mechanical behavior, since the impregnation between matrix and BP is optimized. Electrical conductivity of BP/polymer composites can reach values as high as 2000 S/m, which are several orders of magnitude greater than traditional CNT/polymer composites. Also, BP can improve remarkably the thermal stability of polymer matrices, opening new perspectives to use this material in fire retardant applications

Keywords

BP composites, carbon nanotubes buckypaper, physical properties.

References

1. Chiu, F. C., & Kao, G. F. (2012). Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Composites. Part A, Applied Science and Manufacturing, 43(1), 208-218. http://dx.doi.org/10.1016/j.compositesa.2011.10.010.

2. Kim, K. T., & Jo, W. H. (2011). Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for Nylon66/multi-walled carbon nanotube composites. Carbon, 49(3), 819-826. http://dx.doi.org/10.1016/j.carbon.2010.10.021.

3. Rahmat, M., & Hubert, P. (2011). Carbon nanotube–polymer interactions in nanocomposites: a review. Composites Science and Technology, 72(1), 72-84. http://dx.doi.org/10.1016/j.compscitech.2011.10.002.

4. Kallemullah, M., Khan, S. U., & Kim, J. K. (2012). Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Composites Science and Technology, 72(16), 72-84. http://dx.doi.org/10.1016/j.compscitech.2012.08.020.

5. Ajayan, P. M., Stephan, O., Colliex, C., & Trauth, D. (1994). Aligned carbon canotube arrays formed by cutting a polymer resin—nanotube composite. Science, 265(5176), 1212-1214. PMid:17787587. http://dx.doi.org/10.1126/science.265.5176.1212.

6. Ma, P. C., & Kim, J. K. (2011). Carbon nanotubes for polymer reinforcement. Boca Raton: CRC Press.

7. Wu, C. S. (2011). Polyester and multiwalled carbon nanotube composites: characterization, electrical conductivity and antibacterial activity. Polymer International, 60(5), 807-815. http://dx.doi.org/10.1002/pi.3022.

8. Yesil, S., & Bayram, G. (2011). Poly(ethylene terephthalate)/Carbon Nanotube Composites Prepared With Chemically Treated Carbon Nanotubes. Polymer Engineering and Science, 51(7), 1286-1300. http://dx.doi.org/10.1002/pen.21938.

9. Tang, X. G., Hou, M., Zou, J., Truss, R., & Zhu, Z. (2012). The creep behavior of poly (vinylidene fluoride)/“budbranched” nanotubes nanocomposites.Composites Science and Technology, 72(14), 1656-1664. http://dx.doi.org/10.1016/j.compscitech.2012.06.025.

10. Ma, P. C., Siddiqui, N. A., Maron, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites. Part A, Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

11. Bose, S., Khare, R. A., & Moldenaers, P. (2010). Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer, 51(5), 975-993. http://dx.doi.org/10.1016/j.polymer.2010.01.044.

12. Ribeiro, B. (2015). Obtenção e caracterização de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono (Tese de doutorado). Universidade Estadual Paulista, Guaratinguetá.

13. Martins-Júnior, P. A., Alcântara, C. E., Resende, R. R., & Ferreira, A. J. (2013). Carbon nanotubes: directions and perspectives in oral regenerative medicine. Journal of Dental Research, 92(7), 575-583. http://dx.doi.org/10.1177/0022034513483771. PMid:23677650.

14. Green, M. J., Behabtu, N., Pasquali, M., & Adams, W. W. (2009). Nanotubes as polymers. Polymer, 50(21), 4979-4997. http://dx.doi.org/10.1016/j.polymer.2009.07.044.

15. Grady, B. P. (2011). Carbon-nanotube-polymer composites: manufacture, properties and applications. New Jersey: Wiley.

16. Castillo, F. Y., & Grady, B. P. (2012). Filler reaggregation and network formation time scale in extruded high-density polyethylene/multiwalled carbon nanotube composites. Polymer Engineering and Science, 52(8), 1761-1774. http://dx.doi.org/10.1002/pen.23124.

17. Wei, L., Jiang, W., Goh, K., & Chen, Y. (2013). Mechanical reinforcement of polyethylene using n-alkyl group-functionalized multiwalled carbon nanotubes: Effect of alkyl group carbon chain length and density. Polymer Engineering and Science, 54(2), 336-344. http://dx.doi.org/10.1002/pen.23579.

18. Byrne, M. T., & Gun’ko, Y. K. (2010). Recent advances in research on carbon nanotube–polymer composites. Advanced Materials, 22(15), 1672-1688. PMid:20496401. http://dx.doi.org/10.1002/adma.200901545.

19. Ren, D., Zheng, S., Wu, F., Yang, W., Liu, Z., & Yang, M. (2014). Formation and evolution of the carbon black network in polyethylene/carbon black composites: Rheology and conductivity properties. Journal of Applied Polymer Science, 131(7), n/a. http://dx.doi.org/10.1002/app.39953.

20. Zhao, J., Dai, K., Liu, C., Zheng, G., Wang, B., Liu, C., Chen, J., & Shen, C. (2013). A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Composites. Part A, Applied Science and Manufacturing, 48, 129-136. http://dx.doi.org/10.1016/j.compositesa.2013.01.004.

21. Díez-Pascual, A. M., Ashrafi, B., Naffakh, M., GonzálezDomínguez, J. M., Johnston, A., Simard, B., Martínez, M. T., & Gómez-Fatou, M. A. (2011). Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon, 49(8), 2817-2833. http://dx.doi.org/10.1016/j.carbon.2011.03.011.

22. Kingston, C., Zepp, R., Andrady, A., Boverhof, D., Fehir, R., Hawkins, D., Roberts, J., Sayre, P., Shelton, B., Sultan, Y., Vejins, V., & Wohlleben, W. (2014). Release characteristics of selected carbon nanotube polymer composites. Carbon, 68, 33-57. http://dx.doi.org/10.1016/j.carbon.2013.11.042.

23. Nowack, B., David, R. M., Fissan, H., Morris, H., Shatkin, J., Stintz, M., Zepp, R., & Brouwer, D. (2013). Potential release scenarios for carbon nanotubes used in composites. Environment International, 59, 1-11. PMid:23708563. http://dx.doi.org/10.1016/j.envint.2013.04.003.

24. Fujii, M., Zhang, X., Xie, H. Q., Ago, H., Takahashi, K., Ikuta, T., Abe, H., & Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 95(6), 065502. PMid:16090962. http://dx.doi.org/10.1103/PhysRevLett.95.065502.

25. Choi, T. Y., Poulikakos, D., Tharian, J., & Sennhauser, U. (2006). Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method. Nano Letters, 6(8), 1589-1593. PMid:16895340. http://dx.doi.org/10.1021/nl060331v.

26. Díez-Pascual, A. M., Naffakh, M., Marco, C., Ellis, G., & Gómez-Fatou, M. A. (2012). High-performance nanocomposites based on polyetherketones. Progress in Materials Science, 57(7), 1106-1190. http://dx.doi.org/10.1016/j.pmatsci.2012.03.003.

27. Bose, S., Bhattacharyya, A. R., Kulkarni, A. R., & Potschke, P. (2009). Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile– butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Composites Science and Technology, 69(3-4), 365-372. http://dx.doi.org/10.1016/j.compscitech.2008.10.024.

28. Menzer, K., Krause, B., Boldt, R., Kretzschamar, B., Weidisch, R., & Pötschke, P. (2011). Percolation behavior of multiwalled carbon nanotubes of altered length and primary agglomerate morphology in melt mixed isotactic polypropylene-based composites. Composites Science and Technology, 71(16), 1936-1943. http://dx.doi.org/10.1016/j.compscitech.2011.09.009.

29. Thomas, S. P., Girei, S. A., Atieh, M. A., De, S. K., & AlJuhani, A. (2012). Rheological behavior of polypropylene nanocomposites at low concentration of surface modified carbon nanotubes. Polymer Engineering and Science, 52(9), 1868-1873. http://dx.doi.org/10.1002/pen.23143.

30. Botelho, E. C., Costa, M. L., Braga, C. I., Burkhart, T., & Lauke, B. (2013). Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin. Materials Research, 16(4), 713-720. http://dx.doi.org/10.1590/S1516-14392013005000045.

31. Zhou, K., Gu, S. Y., Zhang, Y. H., & Ren, J. (2012). Effect of dispersion on rheological and mechanical properties of polypropylene/carbon nanotubes nanocomposites. Polymer Engineering and Science, 52(7), 1484-1494. http://dx.doi.org/10.1002/pen.23098.

32. Penu, C., Hu, G. H., Fernandez, A., Marchal, P., & Choplin, L. (2012). Rheological and electrical percolation thresholds of carbon nanotube/polymer nanocomposites. Polymer Engineering and Science, 52(10), 2173-2181. http://dx.doi.org/10.1002/pen.23162.

33. Díez-Pascual, A. M., Naffakh, M., Marco, C., & Ellis, G. (2012). Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites. Part A, Applied Science and Manufacturing, 43(4), 603-612. http://dx.doi.org/10.1016/j.compositesa.2011.12.026.

34. Pereira, A. C. (2011). Estudo da cinética de cura e das propriedades térmicas da resina benzoxazina e de seus compósitos nanoestruturados (Dissertação de mestrado). Universidade Estadual Paulista, Guaratinguetá.

35. Lu, K. L., Lago, R. M., Chen, Y. K., Green, M. L. H., Harris, P. J. F., & Tsang, S. C. (1996). Mechanical damage of carbon nanotubes by ultrasound. Carbon, 34(6), 814-816. http://dx.doi.org/10.1016/0008-6223(96)89470-X.

36. Huang, Y. Y., & Terentjev, E. M. (2012). Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers, 4(1), 275-295. http://dx.doi.org/10.3390/polym4010275.

37. Inam, F., Reece, M. J., & Pejis, T. (2012). Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites. Journal of Composite Materials, 46(11), 1313-1322. http://dx.doi.org/10.1177/0021998311418139.

38. Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J., & Hong, S. H. (2016). Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials & Design, 95, 1-8. http://dx.doi.org/10.1016/j.matdes.2016.01.077.

39. Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. W. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35(7), 837-867. http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.

40. Saito, T., Matsushige, K., & Tanaka, K. (2002). Chemical treatment and modification of multiwalled carbon nanotubes. Physica B, Condensed Matter, 323(1-4), 280-283. http://dx.doi.org/10.1016/S0921-4526(02)00999-7.

41. Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K. M., Jannakoudakis, A., & Docoslis, A. (2008). Effect of acid treated multiwalled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation & Stability, 93(5), 952-967. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.033.

42. Bilalis, P., Katsigiannopoulos, D., Avgeropoulos, A., & Sakellariou, G. (2014). Non-covalent functionalization of carbon nanotubes with polymers. RSC Advances, 4(6), 2911-2934. http://dx.doi.org/10.1039/C3RA44906H.

43. Morishita, T., Matsushita, M., Katagiri, Y., & Fukumori, K. (2010). Noncovalent functionalization of carbon nanotubes with maleimide polymers applicable to high-melting polymerbased composites. Carbon, 48(8), 2308-2316. http://dx.doi.org/10.1016/j.carbon.2010.03.007.

44. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357-401. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.

45. Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F., & Sun, Y. P. (2002). Functionalization of carbon nanotubes with polystyrene. Macromolecules, 35(25), 9466-9471. http://dx.doi.org/10.1021/ma020855r.

46. Díez-Pascual, A. M., Naffakh, M., Gómez, M. A., Marco, C., Ellis, G., González-Domínguez, J. M., Ansón, A., Martinez, M. T., Martínez-Rubi, Y., Simard, B., & Ashrafi, B. (2009). The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 20(31), 315707-315720. PMid:19597256. http://dx.doi.org/10.1088/0957-4484/20/31/315707.

47. Geng, Y., Liu, M. Y., Li, J., Shi, X. M., & Kim, J. K. (2008). Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites. Part A, Applied Science and Manufacturing, 39(12), 1876-1883. http://dx.doi.org/10.1016/j.compositesa.2008.09.009.

48. Sohrabi, B., Poorgholami-Bejarpasi, N., & Nayeri, N. (2014). Dispersion of carbon nanotubes using mixed surfactants: Experimental and molecular dynamics simulation studies. The Journal of Physical Chemistry B, 118(11), 3094-3103. PMid:24555914. http://dx.doi.org/10.1021/jp407532j.

49. Aldalbahi, A., & in het Panhuis, M. (2012). Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multiwalled carbon nanotubes and the biopolymer carrageenan. Carbon, 50(3), 1197-1208. http://dx.doi.org/10.1016/j.carbon.2011.10.034.

50. Wang, Z., Liang, Z., Wang, B., Zhang, C., & Kramer, L. (2004). Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites. Part A, Applied Science and Manufacturing, 35(10), 1225-1232. http://dx.doi.org/10.1016/j.compositesa.2003.09.029.

51. Wang, S., Liang, Z., Pham, G., Park, Y. B., Wang, B., Zhang, C., Kramer, L., & Funchess, P. (2007). Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology, 18(9), 095708. http://dx.doi.org/10.1088/0957-4484/18/9/095708.

52. Wang, S., Haldane, D., Liang, R., Smithyman, J., Zhang, C., & Wang, B. (2013). Nanoscale infiltration behavior and through-thickness permeability of carbon nanotube buckypapers. Nanotechnology, 24(1), 015704. PMid:23221271. http://dx.doi.org/10.1088/0957-4484/24/1/015704.

53. Vohrer, U., Kolaric, I., Haque, M. H., Roth, S., & DetlaffWeglikowska, U. (2004). Carbon nanotube sheets for the use as artificial muscles. Carbon, 42(5-6), 1159-1164. http://dx.doi.org/10.1016/j.carbon.2003.12.044.

54. Zhu, W., Zheng, J. P., Liang, R., Wang, B., Zhang, C., Walsh, S., Au, G., & Plichta, E. J. (2008). Highly-efficient buckypaperbased electrodes for PEMFC. ESC Transactions, 16(2), 1615- 1626. http://dx.doi.org/10.1149/1.2982001.

55. Giubileo, F., Di Bartolomeo, A., Sarno, M., Altavilla, C., Santandrea, S., Ciambelli, P., & Cucolo, A. M. (2012). Field emission properties of as-grown multiwalled carbon nanotube films. Carbon, 50(1), 163-169. http://dx.doi.org/10.1016/j.carbon.2011.08.015.

56. Wu, Q., Zhu, W., Zhang, C., Liang, Z., & Wang, B. (2010). Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon, 48(6), 1799-1806. http://dx.doi.org/10.1016/j.carbon.2010.01.023.

57. Sears, K., Dumee, L., Schutz, J., She, M., Huynh, C., Hawkins, S., Duke, M., & Gray, S. (2010). Recent developments in carbon nanotube membranes for water purification and gas separation. Materials, 3(1), 129-149. http://dx.doi.org/10.3390/ma3010127.

58. Pham, G., Park, Y. B., Wang, S., Liang, Z., Wang, B., Zhang, C., Funchess, P., & Kramer, L. (2008). Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology, 19(32), 325705. PMid:21828827. http://dx.doi.org/10.1088/0957-4484/19/32/325705.

59. Lima, A. M. F., Castro, V. G., Borges, R. S., & Silva, G. G. (2012). Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros: Ciência e Tecnologia, 22(2), 117-124. http://dx.doi.org/10.1590/S0104-14282012005000017.

60. Chapartegui, M., Barcena, J., Irastorza, X., Elizetxea, C., Fernadez, M., & Santamaria, A. (2012). Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Composites Science and Technology, 72(4), 489-497. http://dx.doi.org/10.1016/j.compscitech.2011.12.001.

61. Zhang, J., & Jiang, D. (2012). Influence of geometries of multiwalled carbon nanotubes on the pore structures of Buckypaper. Composites. Part A, Applied Science and Manufacturing, 43(3), 469-474. http://dx.doi.org/10.1016/j.compositesa.2011.11.016.

62. Yang, J., Xu, T., Lu, A., Zhang, Q., Tan, H., & Fu, Q. (2009). Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Composites Science and Technology, 69(2), 147-153. http://dx.doi.org/10.1016/j.compscitech.2008.08.030.

63. Kumar, S., Li, B., Caceres, S., Maguire, R. G., & Zhong, W. H. (2009). Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multiwalled carbon nanotubes via a facile solution processing method. Nanotechnology, 20(46), 465708. PMid:19847036. http://dx.doi.org/10.1088/0957-4484/20/46/465708.

64. Zhang, J., Kong, L. B., Wang, B., Luo, Y. C., & Kang, L. (2009). In-situ electrochemical polymerization of multiwalled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synthetic Metals, 159(3-4), 260-266. http://dx.doi.org/10.1016/j.synthmet.2008.09.018.

65. Song, L., Zhang, H., Zhang, Z., & Xie, S. (2007). Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Composites. Part A, Applied Science and Manufacturing, 38(2), 388-392. http://dx.doi.org/10.1016/j.compositesa.2006.03.007.

66. Lahiff, E., Leahy,R., Coleman, J. N., & Blau, W. J. (2006). Physical properties of novel free-standing polymer–nanotube thin films. Carbon, 44(8), 1525-1529. http://dx.doi.org/10.1016/j.carbon.2005.12.018.

67. Coleman, J. N., Blau, W. J., Dalton, A. B., Muñoz, E., Collins, S., Kim, B. G., Razal, J., Selvidge, M., Vieiro, G., & Baughman, R. (1682-1684). Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters, 82(11). http://dx.doi.org/10.1063/1.1559421.

68. Che, J., Chen, P., & Chan-Park, M. B. (2013). High-strength carbon nanotube buckypaper composites as applied to freestanding electrodes for supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(12), 4057-4066. http://dx.doi.org/10.1039/c3ta01421e.

69. Wang, X., Lu, S., Ma, K., Xiong, X., Zhang, H., & Xu, M. (2015). Tensile strain sensing of buckypaper and buckypaper composites. Materials & Design, 88, 414-419. http://dx.doi.org/10.1016/j.matdes.2015.09.035.

70. Steiner, S., Busato, S., & Ermanni, P. (2012). Mechanical properties and morphology of papers prepared from singlewalled carbon nanotubes functionalized with aromatic amides. Carbon, 50(5), 1713-1719. http://dx.doi.org/10.1016/j.carbon.2011.12.001.

71. Berhan, L., Yi, Y. B., Sastry, A. M., Munoz, E., Selvidge, M., & Baughman, R. (2004). Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. Journal of Applied Physics, 95(8), 4335-4345. http://dx.doi.org/10.1063/1.1687995.

72. Trakakis, J., Tasis, D., Aggelopoulos, C., Parthenios, J., Galiotis, C., & Papagelis, K. (2013). Open structured in comparison with dense multiwalled carbon nanotube buckypapers and their composites. Composites Science and Technology, 77, 52-59. http://dx.doi.org/10.1016/j.compscitech.2013.01.003.

73. Han, J., Zhang, H., Chen, M., Wang, G., & Zhang, Z. (2014). CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Composites Science and Technology, 103, 63-71. http://dx.doi.org/10.1016/j.compscitech.2014.08.015.

74. Ashrafi, B., Guan, J., Mirjalili, V., Hubert, P., Simard, B., & Johnston, A. (2010). Correlation between Young’s modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper. Composites. Part A, Applied Science and Manufacturing, 41(9), 1184-1191. http://dx.doi.org/10.1016/j.compositesa.2010.04.018.

75. Díez-Pascual, A. M., Guan, J., Simard, B., & Gómez-Fatou, M. A. (2012). Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II – Mechanical properties, electrical and thermal conductivity. Composites. Part A, Applied Science and Manufacturing, 43(6), 1007-1015. http://dx.doi.org/10.1016/j.compositesa.2011.11.003.

76. Díez-Pascual, A. M., Naffakh, M., Marco, C., & Ellis, G. (2012). Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites. Part A, Applied Science and Manufacturing, 43(4), 603-612. http://dx.doi.org/10.1016/j.compositesa.2011.12.026.

77. Chiu, F.-C., & Cao, G.-F. (2012). Polyamide 46/multiwalled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Composites. Part A, Applied Science and Manufacturing, 43(1), 208-218. http://dx.doi.org/10.1016/j.compositesa.2011.10.010.

78. Liebscher, M., Tzounis, L., Potschke, P., & Heinrich, G. (2013). Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties. Polymer, 54(25), 6801-6808. http://dx.doi.org/10.1016/j.polymer.2013.10.040.

79. Bouchard, J., Cayla, A., Devaux, E., & Campagne, C. (2013). Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Composites Science and Technology, 86, 177-184. http://dx.doi.org/10.1016/j.compscitech.2013.07.017.

80. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2015). Estudo das propriedades elétricas e térmicas de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 25(1), 94-100. http://dx.doi.org/10.1590/0104-1428.1728.

81. Krause, B., Boldt, R., Häußler, L., & Pötschke, P. (2015). Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Composites Science and Technology, 114, 119- 125. http://dx.doi.org/10.1016/j.compscitech.2015.03.014.

82. Noh, Y. J., Pak, S. Y., Hwang, S. W., Hwanh, J. Y., Kim, S. Y., & Youn, J. R. (2013). Enhanced dispersion for electrical percolation behavior of multiwalled carbon nanotubes in polymer nanocomposites using simple powder mixing and in situ polymerization with surface treatment of the fillers. Composites Science and Technology, 89, 29-37. http://dx.doi.org/10.1016/j.compscitech.2013.09.013.

83. Han, J. H., Zhang, H., Chu, P. F., Imani, A., & Zhang, Z. (2015). Friction and wear of high electrical conductive carbon nanotube buckypaper/epoxy composites. Composites Science and Technology, 114, 1-10. http://dx.doi.org/10.1016/j.compscitech.2015.03.012.

84. Wang, S., Liang, R., Wang, B., & Zhang, X. (2009). Dispersion and thermal conductivity of carbon nanotube composites. Carbon, 47(1), 53-57. http://dx.doi.org/10.1016/j.carbon.2008.08.024.

85. Kwon, S. Y., Kwon, I. M., Kim, Y. G., Lee, S., & Seo, Y. S. (2013). A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon, 55, 285-290. http://dx.doi.org/10.1016/j.carbon.2012.12.063.

86. Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science, 36(7), 914-944. http://dx.doi.org/10.1016/j.progpolymsci.2010.11.004.

87. Marconnet, A. M., Yamamoto, M., Panzer, M. A., Wardle, B. L., & Goodson, K. E. (2011). Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density. ACS Nano, 5(6), 4818-4825. PMid:21598962. http://dx.doi.org/10.1021/nn200847u.

88. Yang, S. Y., Ma, C. M., Teng, C. C., Huang, Y. W., Liao, S. H., Huang, Y. L., Tien, H. W., Lee, T. M., & Chiou, K. C. (2010). Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon, 48(3), 592-603. http://dx.doi.org/10.1016/j.carbon.2009.08.047.

89. Díez-Pascual, A. M., Martínez, G., Martínez, M. T., & Goméz, M. A. (2010). Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes. Journal of Materials Chemistry, 20(38), 8247-8256. http://dx.doi.org/10.1039/C0JM01531H.

90. Gonnet, P., Liang, Z., Choi, E. S., Kadambala, R. S., Zhang, C., Brooks, J. S., Wang, B., & Kramer, L. (2006). Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Current Applied Physics, 6(1), 119-122. http://dx.doi.org/10.1016/j.cap.2005.01.053.

91. Fu, X., Zhang, C., Liu, T., Liang, R., & Wang, B. (2010). Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology, 21(23), 235701-235709. PMid:20463386. http://dx.doi.org/10.1088/0957-4484/21/23/235701.

92. Chapartegui, M., Barcena, J., Irastorza, X., Elizetxea, C., Fiamegkou, E., Kostopoulos, V., & Santamaria, A. (2012). Manufacturing, characterization and thermal conductivity of epoxy and benzoxazine multiwalled carbon nanotube buckypaper composites. Journal of Composite Materials, 47(14), 1705-1715. http://dx.doi.org/10.1177/0021998312450929.

93. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2014). Estudo da cinética de decomposição de compósitos nanoestruturados de poli (sulfeto de fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 24(6), 720-725. http://dx.doi.org/10.1590/0104-1428.1698.

94. Chrissafis, K., & Bikiaris, D. (2011). Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta, 523(1-2), 1-24. http://dx.doi.org/10.1016/j.tca.2011.06.010.95. Chen, S., Yu, H., Ren, W., & Zhang, Y. (2009). Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochimica Acta, 491(1-2), 103-108. http://dx.doi.org/10.1016/j.tca.2009.03.010.

95. Chen, S., Yu, H., Ren, W., & Zhang, Y. (2009). Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochimica Acta, 491(1-2), 103-108. http://dx.doi.org/10.1016/j.tca.2009.03.010.

96. Kim, J. Y., Park, W. S., & Kim, S. H. (2009). Thermal decomposition behavior of carbon-nanotube- reinforced poly(ethylene 2,6-naphthalate) nanocomposites. Journal of Applied Polymer Science, 113(3), 2008-2017. http://dx.doi.org/10.1002/app.30297.

97. Yu, S., Wong, W. M., Hu, X., & Juay, Y. K. (2009). The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. Journal of Applied Polymer Science, 113(6), 3477-3483. http://dx.doi.org/10.1002/app.30191.

98. Díez-Pascual, A. M., Naffakh, M., González-Domínguez, J. M., Ansón, A., Martínez-Rúbi, Y., Martínez, M. T., Simard, B., & Gómez, M. A. (2010). High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties. Carbon, 48(12), 3485-3499. http://dx.doi.org/10.1016/j.carbon.2010.05.046.

99. Díez-Pascual, A. M., Guan, J., Simard, B., & Gómez-Fatou, M. A. (2012). Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I – Structure, thermal stability and crystallization behavior. Composites. Part A, Applied Science and Manufacturing, 43(6), 997-1006. http://dx.doi.org/10.1016/j.compositesa.2011.11.002.

5b7c113c0e8825e374896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections