Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Rosin maleic anhydride adduct antibacterial activity against methicillin-resistant Staphylococcus aureus

Zahid Majeed; Muhammad Mushtaq; Zainab Ajab; Qingjie Guan; Mater Hussen Mahnashi; Yahya Saeed Alqahtani; Basharat Ahmad

Downloads: 0
Views: 574


The emergence of antibiotic resistance in microorganisms is a serious challenge globally. Natural hydrophobic diterpene carboxylic acids present in rosin have unsatisfactory inhibitory properties against pathogens due to their poor water solubility. Therefore, the objective of research work was to modify the natural rosin into rosin maleic anhydride adduct with improved bioinhibitory properties for methicillin-resistant Staphylococcus aureus (MRSA). Prescreened MRSA isolates were found 78.05% and 29.27% resistant to oxacillin and vancomycin antibiotics respectively. The dosage effect of 0, 25, 50, and 100 mg L-1 rosin maleic anhydride adduct revealed the best inhibition response at 25 mg L-1. Moreover, bacteriostatic as well as the inhibitory effect of rosin maleic anhydride adduct was noticed against MRSA isolates. Gompertz model predicted better uptake of maleic anhydride adduct as compared to rosin. The higher specific growth rate of MRSA at reduced lag time correlated with increased toxicity of maleic anhydride adduct. This research concludes rosin maleic anhydride adduct has superior inhibitory properties against MRSA strains.


drug resistance, growth kinetics, growth inhibition, MRSA, rosin maleic anhydride adduct


1 Seyfried, P. L., Tobin, R. S., Brown, N. E., & Ness, P. F. (1985). A prospective study of swimming-related illness. II. Morbidity and the microbiological quality of water. American Journal of Public Health, 75(9), 1071-1075. http://dx.doi.org/10.2105/AJPH.75.9.1071. PMid:4025657.

2 McDougal, L. K., Steward, C. D., Killgore, G. E., Chaitram, J. M., McAllister, S. K., & Tenover, F. C. (2003). Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. Journal of Clinical Microbiology, 41(11), 5113-5120. http://dx.doi.org/10.1128/JCM.41.11.5113-5120.2003. PMid:14605147.

3 Witte, W., Strommenger, B., Klare, I., & Werner, G. (2004). Antibiotic-resistant nosocomial pathogens. Part I: diagnostic and typing methods. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 47(4), 352-362. http://dx.doi.org/10.1007/s00103-004-0810-y. PMid:15205778.

4 Yau, V., Wade, T. J., de Wilde, C. K., & Colford, J. M., Jr. (2009). Skin-related symptoms following exposure to recreational water: a systematic review and meta-analysis. Water Quality, Exposure, and Health, 1(2), 79-103. http://dx.doi.org/10.1007/s12403-009-0012-9.

5 McCarthy, A. J., Witney, A. A., & Lindsay, J. A. (2012). Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Frontiers in Cellular and Infection Microbiology, 2, 6. http://dx.doi.org/10.3389/fcimb.2012.00006. PMid:22919598.

6 Hartman, B. J., & Tomasz, A. (1984). Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. Journal of Bacteriology, 158(2), 513-516. http://dx.doi.org/10.1128/JB.158.2.513-516.1984. PMid:6563036.

7 Tavares, A. L. (2014). Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in Portugal (Doctoral dissertation). Universidade NOVA de Lisboa, Portugal. Retrieved in 2020, April 18, from https://run.unl.pt/handle/10362/14236

8 Söderberg, T. A., Gref, R., Holm, S., Elmros, T., & Hallmans, G. (1990). Antibacterial activity of rosin and resin acids in vitro. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 24(3), 199-205. http://dx.doi.org/10.3109/02844319009041279. PMid:2281306.

9 Sipponen, A., & Laitinen, K. (2011). Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. APMIS, 119(10), 720-724. http://dx.doi.org/10.1111/j.1600-0463.2011.02791.x. PMid:21917009.

10 Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. (2017). Synthesis and characterization of novel reduced gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. http://dx.doi.org/10.1007/s00289-016-1877-y.

11 Santovito, E., Neves, J., Greco, D., D’Ascanio, V., Sarmento, B., Logrieco, A. F., & Avantaggiato, G. (2018). Antimicrobial properties of rosin acids-loaded nanoparticles against antibiotic-sensitive and antibiotic-resistant foodborne pathogens. Artificial Cells, Nanomedicine, and Biotechnology, 46(Suppl 3), S414-S422. https://doi.org/10.1080/21691401.2018.1496924.

12 Sipponen, A., Peltola, R., Jokinen, J. J., Laitinen, K., Lohi, J., Rautio, M., Männistö, M., Sipponen, P., & Lounatmaa, K. (2009). Effects of Norway spruce (Picea abies) resin on cell wall and cell membrane of Staphylococcus aureus. Ultrastructural Pathology, 33(3), 128-135. http://dx.doi.org/10.1080/01913120902889138. PMid:19479653.

13 Atta, A. M., & Elsaeed, A. M. (2011). Use of rosin‐based nonionic surfactants as petroleum crude oil sludge dispersants. Journal of Applied Polymer Science, 122(1), 183-192. http://dx.doi.org/10.1002/app.34052.

14 Karlberg, A. T., & Hagvall, L. (2018). Colophony: Rosin in unmodified and modified form. In T. Rustemeyer, P. Elsner, S. M. John & H. I. Maibach (Eds.), Kanerva’s occupational dermatology (pp. 607-624). Berlin Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-319-40221-5_41-2.

15 Mumtaz, I., Majeed, Z., Ajab, Z., Ahmad, B., Khurshid, K., & Mubashir, M. (2019). Optimized tuning of rosin adduct with maleic anhydride for smart applications in controlled and targeted delivery of urea for higher plant’s uptake and growth efficiency. Industrial Crops and Products, 133, 395-408. http://dx.doi.org/10.1016/j.indcrop.2019.02.036.

16 National Center for Biotechnology Information PubChem Database. Retrieved in 2020, April 18, from https://pubchem.ncbi.nlm.nih.gov/compound/Rosin

17 Johnson, T. R., Case, C. L., Cappuccino, J. G., & Sherman, N. (2013). Great adventures in the microbiology laboratory: microbiology 22. UK: Pearson Learning Solutions.

18 Ekawati, E. R., Darmanto, W., & Wahyuningsih, S. P. A. (2020). Detection of Staphylococcus aureus in wound infection on the skin surface. IOP Conference Series: Earth and Environmental Science, 456, 012038. http://dx.doi.org/10.1088/1755-1315/456/1/012038.

19 Nathwani, D. (2018). Overview of AMR. In British Society for Antimicrobial Chemotherap (Ed.), Antimicrobial stewardship: from principles to practice (Chap. 1, pp. 12-26). UK: British Society for Antimicrobial Chemotherap. Retrieved in 2020, April 18, from http://www.bsac.org.uk/antimicrobialstewardshipebook/BSAC-AntimicrobialStewardship-FromPrinciplestoPractice-eBook.pdf

20 Almutairi, M. S., Zakaria, A. S., Ignasius, P. P., Al-Wabli, R. I., Joe, I. H., & Attia, M. I. (2018). Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: experimental and theoretical approaches. Journal of Molecular Structure, 1153, 333-345. http://dx.doi.org/10.1016/j.molstruc.2017.10.025.

21 Hussain, S. S., HusseinAlwan, A., Abbas, M., & Tektook, N. K. (2019). Biochemical and molecular diagnosis of Escherichia coliand Pseudomonas aeruginosa isolated from UTI patients. In The First International Scientific Conference of Health and Medical Specialties (pp. 12-30). Iraq: Kut Technical Institute, Middle Technical Universty. Retrieved in 2020, April 18, from http://kti.mtu.edu.iq/conf/researches/3.pdf

22 Corey, B. W., Thompson, M. G., Hittle, L. E., Jacobs, A. C., Asafo-Adjei, E. A., Huggins, W. M., Melander, R. J., Melander, C., Ernst, R. K., & Zurawski, D. V. (2017). 1, 2, 4-triazolidine-3-thiones have specific activity against Acinetobacter baumannii among common nosocomial pathogens. ACS Infectious Diseases, 3(1), 62-71. http://dx.doi.org/10.1021/acsinfecdis.6b00133. PMid:27764938.

23 Majeed, Z., Mansor, N., ismail, S., Mathialagan, R., & Man, Z. (2016). Gompertz kinetics of soil microbial biomass in response to lignin reinforcing of urea-crosslinked starch films. Procedia Engineering, 148, 553-560. http://dx.doi.org/10.1016/j.proeng.2016.06.510.

5f6def580e88257c0e97b916 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections