Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.03719
Polímeros: Ciência e Tecnologia
Original Article

In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®

Pereira, Ingrid Cristina Soares; Santos, Natália Rodrigues Rojas dos; Middea, Antonieta; Prudencio, Edlene Ribeiro; Luchese, Rosa Helena; Moreira, Ana Paula Duarte; Oliveira, Renata Nunes

Downloads: 0
Views: 35

Abstract

Enrofloxacin can be slowly delivered through polymeric systems and the addition of oil could increase the polymeric gels hydrophobicity and help the continuous release. The present work intended to develop and characterize microstructurally (XRD and FTIR) and in vitro (swelling and antimicrobial tests) the PVA hydrogels loaded with copaiba oil and Duotrill (enrofloxacin) to treat bacterial infections, as pyelonephritis, in the veterinary field. Duotrill® and oil combined diminished the gels degree of crystallinity and it was observed interaction between phases due to a new band found only in PVA hydrogels loaded with copaiba oil and Duotrill (PVA-D-O) FTIR spectrum. The samples with oil swelled less than samples without it, where copaiba oil altered the samples’ hydrophilicity. PVA-D-O presented lower weight loss and higher gel fraction than PVA, indicating the loaded material increased the gels stability. All samples containing oil and Duotrill® inhibited S. aureus.

Keywords

PVA; hydrogel; copaiba oil; enrofloxacin; in vitro.

References

1 Parry, N. M. A. (2005). Pyelonephritis in small animals. UK Vet10(6), 1-5. Retrieved in 2019, May 14, from http://www.parrymedicalwriting.com/wp-content/uploads/2011/09/29-pyelonephritis.pdf 

2 Galvão, A. L. B. (2010). Pyelonephritis in small animals - Revision of the literature. Revista Científica Eletrônica de Medicina Veterinária15, 1-8. Retrieved in 2019, May 14, from http:// faef.revista.inf.br/imagens_arquivos/arquivos_destaque/JmZA8rxFKG63OnZ_2013-6-25-16-26-39.pdf 

3 Feldkircher, K. C. G. (2014). Intoxicação medicamentosa em animais domésticos. MEDVEP - Revista Científica de Medicina Veterinária - Pequenos Animais e Animais de Estimação1, 14-18. Retrieved in 2019, May 14, from: revista.faciplac.edu.br/index.php/Revet/article/download/122/68 

4 Oliveira, R. N., McGuinness, G. B., Rouze, R., Quilty, B., Cahill, P., Soares, G. D. A., & Thiré, R. M. S. M. (2015). PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science132, 1-12. https://doi.org/10.1002/app.42129

5 Stauffer, S. R., & Peppast, N. A. (1992). Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer33(18), 3932-3936. http://dx.doi.org/10.1016/0032-3861(92)90385-A

6 Monteiro, M. M. C. (2014). Síntese de hidrogéis biocompatíveis para encapsulamento de fármacos (Master’s thesis). Universidade de Coimbra, Coimbra. 

7 Liu, Y., Geever, L. M., Kennedy, J. E., Higginbotham, C. L., Cahill, P. A., & McGuinness, G. B. (2010). Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. Journal of the Mechanical Behavior of Biomedical Materials3(2), 203-209. http://dx.doi.org/10.1016/j.jmbbm.2009.07.001. PMid:20129419. 

8 Dragan, E. S. (2014). Design and applications of interpenetrating polymer network hydrogels. Chemical Engineering Journal243, 572-590. http://dx.doi.org/10.1016/j.cej.2014.01.065

9 Jensen, B. E., Dávila, I., & Zelikin, A. N. (2016). Poly(vinyl alcohol) physical hydrogels: matrix-mediated drug delivery using spontaneously eroding substrate. The Journal of Physical Chemistry B120(26), 5916-5926. http://dx.doi.org/10.1021/acs.jpcb.6b01381. PMid:26958864. 

10 Marques, S. C. C. (2011). Libertação de ibuprofeno de hidrogéis de PVA contendo porfirinas (Master’s thesis). Universidade de Coimbra, Coimbra. 

11 Muriel-Galet, V., Cerisuelo, J. P., López-Carballo, G., Lara, M., Gavara, R., & Hernández-Muñoz, P. (2012). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology157(2), 195-201. http://dx.doi.org/10.1016/j.ijfoodmicro.2012.05.002. PMid:22633535. 

12 Brandelero, R. P., Almeida, F. M., Alfaro, A. (2015). The microstructure and properties of starch-polyvinyl alcohol-alginate films with copaiba and lemongrass oils. Quimica Nova38(7), 910-916. http://dx.doi.org/10.5935/0100-4042.20150098

13 Ribeiro-Santos, R., Andrade, M., & Sanches-Silva, A. (2017). Application of encapsulated essential oils as antimicrobial agents in food packaging. Current Opinion in Food Science14, 78-84. http://dx.doi.org/10.1016/j.cofs.2017.01.012.

14 Kavoosi, G., Bordbar, Z., Dadfar, S. M., & Dadfar, S. M. M. (2017). Preparation and characterization of a novel gelatin-poly(vinyl alcohol) hydrogel film loaded with Zataria multiflora essential oil for antibacterial-antioxidant wound-dressing applications. Journal of Applied Polymer Science134, 1-8. https://doi.org/10.1002/app.45351

15 Phan The, D., Debeaufort, F., Voilley, A., & Luu, D. (2009). Influence of hydrocolloid nature on the structure and functional properties of emulsified edible films. Food Hydrocolloids23(3), 691-699. http://dx.doi.org/10.1016/j.foodhyd.2008.05.006

16 Sachetti, C. G., Carvalho, R. R., Paumgartten, F. J., Lameira, O. A., & Caldas, E. D. (2011). Developmental toxicity of copaiba tree (Copaifera reticulata Ducke, Fabaceae) oleoresin in rat. Food and Chemical Toxicology49(5), 1080-1085. http://dx.doi.org/10.1016/j.fct.2011.01.015. PMid:21266184. 

17 Veiga Junior, V. F., & Pinto, A. C. (2002). The Copaifera L. genus. Quimica Nova25(2), 273-286. http://dx.doi.org/10.1590/S0100-40422002000200016

18 Veiga Junior, V. F., Rosas, E. C., Carvalho, M. V., Henriques, M. G., & Pinto, A. C. (2007). Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne - a comparative study. Journal of Ethnopharmacology112(2), 248-254. http://dx.doi.org/10.1016/j.jep.2007.03.005. PMid:17446019.

19 Tincusi, B. M., Jiménez, I. A., Bazzocchi, I. L., Moujir, L. M., Mamani, Z. A., Barroso, J. P., Ravelo, A. G., & Hernández, B. V. (2002). Antimicrobial terpenoids from the oleoresin of the Peruvian Medicinal Plant Copaifera paupera. Planta Medica68(9), 808-812. http://dx.doi.org/10.1055/s-2002-34399. PMid:12357392. 

20 Laboratórios Duprat. (2017). Ficha técnica: Duotrill 50 mg comprimidos. Rio de Janeiro: Laboratórios Duprat. Retrieved in 2019, March 14, from: https://www.laboratoriosduprat.com.br 

21 Vancutsem, P. M., Babish, J. G., & Schwark, W. S. (1990). The fluorquinolone antimicrobials: structure, antimicrobial activity, pharmacokinetics, clinical use in domestic animals and toxicity. The Cornell Veterinarian80(2), 173-186. PMid:2180631. Retrieved in 2019, May 14, from: https://babel.hathitrust.org/cgi/pt?id=coo.31924056935673;view=1up;seq=187 

22 Barcellos, H. H. A., Oliveira, S. T., Alves, L. P., Motta, A. C., Rocha, F. R., & Brun, M. V. (2006). Intoxicação por enrofloxacina em um cão da raça Pinscher Miniatura: relato de caso. Arquivo Brasileiro de Medicina Veterinária e Zootecnia58(1), 39-43. http://dx.doi.org/10.1590/S0102-09352006000100007

23 Solanki, T. H., Patel, J., Varia, R. D., Bhavsar, S. K., Vihol, P. D., & Modi, F. D. (2016). In Vitro release and pharmacokinetics of enrofloxacin PHBV microsphere in rats. International Journal of ScienceEnvironmental Technology5(4), 2522-2531. Retrieved in 2019, May 14, from: http://www.ijset.net/journal/1191.pdf 

24 Azrina, Z. A. Z., Beg, M. D. H., Yunus, R. M., & Ramli, R. (2017). Nano crystal cellulose incorporated poly vinyl alcohol (PVA) hydrogel for industrial waste water treatment. Australian Journal of Basic and Applied Sciences11(3), 137-142. Retrieved in 2019, May 14, from: http://www.ajbasweb.com/old/ajbas/2017/Special%20issue%20ICCEIB/137-142.pdf 

25 Oliveira, R. N., Rouzé, R., Quilty, B., Alvez, G. G., Thiré, R. M., & McGuinness, G. B. (2013). Mechanical properties and in vitro chracterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus4(1), 1-11. http://dx.doi.org/10.1098/rsfs.2013.0049

26 Costa, D. R. (2012). Hidrogéis de PVA-NaCMC para aplicação em curativos (Graduation degree). Universidade Federal do Rio de Janeiro, Rio de Janeiro. 

27 Alcântara, M. T. S., Brant, A. J. C., Giannini, D. R., Pessoa, J. O. C. P., Andrade, A. B., Riella, H. G., & Lugão, A. B. (2012). Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation - Part I: gel fraction, swelling, and mechanical properties. Radiation Physics and Chemistry81(9), 1465-1470. http://dx.doi.org/10.1016/j.radphyschem.2012.01.048

28 Hua, S., Ma, H., Li, X., Yang, H., & Wang, A. (2010). pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. International Journal of Biological Macromolecules46(5), 517-523. http://dx.doi.org/10.1016/j.ijbiomac.2010.03.004. PMid:20223260. [

29 Parsa, P., Paydayesh, A., & Davachi, S. M. (2019). Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. International Journal of Biological Macromolecules121, 1061-1069. http://dx.doi.org/10.1016/j.ijbiomac.2018.10.074. PMid:30342143. 

30 Lee, J. M., Sultan, M. T., Kim, S. H., Kumar, V., Yeon, Y. K., Lee, O. J., & Park, C. H. (2017). Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. International Journal of Molecular Sciences18(8), 1-15. http://dx.doi.org/10.3390/ijms18081707. PMid:28777314.

31 Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., & Mansur, H. S. (2006). Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research9(2), 185-191. http://dx.doi.org/10.1590/S1516-14392006000200014

32 Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N. S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials (Basel)9(8), 1-16. http://dx.doi.org/10.3390/ma9080644. PMid:28773763. 

33 Raju, C. L., Rao, J. L., Reddy, B. C. V., & Veera Brahmam, K. (2007). Thermal and IR studies on copper doped polyvinyl alcohol. Bulletin of Materials Science30(3), 215-218. http://dx.doi.org/10.1007/s12034-007-0038-1.

34 Campos, E., Coimbra, P., & Gil, M. H. (2013). An improved method for preparing glutaraldehyde cross-linked chitosan–poly(vinyl alcohol) microparticles. Polymer Bulletin70(2), 549-556. http://dx.doi.org/10.1007/s00289-012-0853-4

35 Pinheiro, J. G. O., Tavares, E. A., Silva, S. S. D., Félix Silva, J., Carvalho, Y. M. B. G., Ferreira, M. R. A., Araújo, A. A. S., Barbosa, E. G., Fernandes Pedrosa, M. F., Soares, L. A. L., Azevedo, E. P., Veiga Júnior, V. F. D., & Lima, Á. A. N. (2017). Inclusion complexes of copaiba (Copaifera multijuga Hayne) oleoresin and cyclodextrins: physicochemical characterization and anti-inflammatory activity. International Journal of Molecular Sciences18(11), 1-18. http://dx.doi.org/10.3390/ijms18112388. PMid:29156553.

36 - Ben Salem, S., Mezni, M., Errami, M., Amine, K. M., Salghi, R., Ismat, H. A., Chakir, A., Hammouti, B., Messali, M., & Fattouch, S. (2015). Degradation of enrofloxacin antibiotic under combined ionizing radiation and biological removal technologies. International Journal of Electrochemical Science10, 3613-3622. 

37 Yan, W., Zhang, J., & Jing, C. (2013). Adsorption of Enrofloxacin on montmorillonite: two-dimensional correlation ATR/FTIR spectroscopy study. Journal of Colloid and Interface Science390(1), 196-203. http://dx.doi.org/10.1016/j.jcis.2012.09.039. PMid:23079042. 

38 Puspitasari, T., Raja, K. M. L., Pangerteni, D. S., Patriati, A., & Putra, E. G. R. (2012). Structural organization of poly(vinyl alcohol) hydrogels obtained by freezing/thawing and γ-irradiation processes: a small-angle neutron scattering (SANS) study. Procedia Chemistry4, 186-193. http://dx.doi.org/10.1016/j.proche.2012.06.026

39 Gutierrez, L., Miranda-Calderon, J. E., Garcia-Gutierrez, P., & Sumano, H. (2015). Physicochemical characterization and pharmacokinetics in broiler chickens of a new recrystallized enrofloxacin hydrochloride dihydrate. Journal of Veterinary Pharmacology and Therapeutics38(2), 183-189. http://dx.doi.org/10.1111/jvp.12153. PMid:25224691. 

40 Thangadurai, S., Shukla, S. K., Srivastava, A. K., & Anjaneyulu, Y. (2003). X-ray powder diffraction patterns for certain fluoroquinolone antibiotic drugs. Acta Pharmaceutica (Zagreb, Croatia)53(4), 295-303. PMid:14769236. 

41 Mabrouk, M., Mostafa, A. A., Oudadesse, H., Mahmoud, A. A., & El-Gohary, M. I. (2013). Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceramics International40(3), 4833-4845. https://doi.org/10.1016/j.ceramint.2013.09.033 

42 Malik, N. S., Ahmad, M., & Minhas, M. U. (2017). Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One, 12(2), 1-17. http://dx.doi.org/10.1371/journal.pone.0172727 

43 Wong, R. S. H., & Dodou, K. (2017). Effect of drug loading method and drug physicochemical properties on the material and drug release properties of poly (ethylene oxide) hydrogels for transdermal delivery. Polymers9(7), 1-29. http://dx.doi.org/10.3390/polym9070286. PMid:30970963.

44 Ottenbrite, R. M., Park, K., & Okano, T. (2010). Biomedical applications of hydrogels handbook. London: Springer. 

45 Brandelero, R. P. H., Grossmann, M. V., & Yamashita, F. (2013). Hidrofilicidade de filmes de amido/poli(butileno adipato co-tereftalato) (Pbat) adicionados de tween 80 e óleo de soja. Polímeros Ciência e Tecnologia23(2), 270-275. http://dx.doi.org/10.4322/S0104-14282013005000011

46 Pereira, N. C. M., Mariscal, A. G., Nepoceno, K. L. P. C., Silva, V. C. C. R., Fernandes, H. M., & Vivi, V. K. (2018). Antimicrobial activity of natural/commercial copaiba oil-resin against standard strains. Journal Health NPEPS3(2), 527-539. http://dx.doi.org/10.30681/252610103189

47 Nunes, S. F., Bexiga, R., Cavaco, L. M., & Vilela, C. L. (2007). Technical note: antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis. Journal of dairy science90(7), 3242-3246. http://dx.doi.org/10.3168/jds.2006-739. PMid:17582107. 

48 Wang, W., Lin, X., Jiang, T., Peng, Z., Xu, J., Yi, L., Li, F., Fanning, S., & Baloch, Z. (2018). Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Frontiers in Microbiology9, 1123. http://dx.doi.org/10.3389/fmicb.2018.01123. PMid:29988423. 

5e8e2cb20e882550401ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections