Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.03519
Polímeros: Ciência e Tecnologia
Original Article

Electrical and spectroelectrochemical investigation of thiophene-based donor-acceptor copolymers with 3,4-ethylenedioxythiophene

Marcus Henrique de Araujo; Tulio Matencio; Claudio Luis Donnici; Hállen Daniel Rezende Calado

Downloads: 0
Views: 136

Abstract

This work reports the spectroelectrochemical and electrical behavior of electropolymerized donor-acceptor like (D-A) copolymer films, based on 3,4-ethylenedioxythiophene (EDOT) and beta-substituted electron-acceptor thiophenes. Initially, the copolymer films were deposited on indium tin oxide substrates, which spectroelectrochemistry measurements were carried out with an UV-Vis spectrophotometer. Hence, it was possible to observe the electrochromic properties of these materials, visualizing the color changing towards different potentials applied. The experiments have shown that these D-A like copolymers presented good electrochromic properties, such as optical contrast, coloration efficiency, and switching times. Additionally, films prepared on a platinum working electrode were investigated by electrochemical impedance spectroscopy, which has shown the electrical behavior of those copolymers and their potential as candidates to capacitive devices building. Therefore, the combination of electron-donor EDOT with those electron-acceptor monomers is indeed a useful strategy to tailoring and fine-tuning the physicochemical properties of polythiophenes with innovative applications.

Keywords

donor-acceptor copolymers, electrical behavior, polythiophenes, spectroelectrochemistry

References

1 Mishra, A., Ma, C. Q., & Bauerle, P. (2009). Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chemical Reviews, 109(3), 1141-1276. http://dx.doi.org/10.1021/cr8004229. PMid:19209939.

2 Perepichka, I. F., & Perepichka, D. F. (2009). Handbook of thiophene-based materials: applications in organic electronics and photonics. Chichester: Wiley. http://dx.doi.org/10.1002/9780470745533.

3 Vasilyeva, S. V., Beaujuge, P. M., Wang, S. J., Babiarz, J. E., Ballarotto, V. W., & Reynolds, J. R. (2011). Material strategies for black-to-transmissive window-type polymer electrochromic devices. Applied Materials & Interfaces, 3(4), 1022-1032. http://dx.doi.org/10.1021/am101148s.

4 Beaujuge, P. M., & Reynolds, J. R. (2010). Color control in pi-conjugated organic polymers for use in electrochromic devices. Chemical Reviews, 110(1), 268-320. http://dx.doi.org/10.1021/cr900129a. PMid:20070115.

5 Zhao-yang, Z., Yi-jie, T., Xiao-qian, X., Yong-jiang, Z., Hai-feng, C., & Wen-wei, Z. (2012). Electrosynthesises and characterizations of copolymers based on thiophene and 3,4-ethylenedioxythiophene in boron trifluoride diethyl etherate. Synthetic Metals, 162(23), 2176-2181. http://dx.doi.org/10.1016/j.synthmet.2012.10.011.

6 Ming, S., Zhang, S., Liu, H., Zhao, Y., Mo, D., & Xu, J. (2015). Methacrylate modified polythiophene: electrochemistry and electrochromics. International Journal of Electrochemical Science, 10(8), 6598-6609. Retrieved in 2019, May 12, from http://www.electrochemsci.org/papers/vol10/100806598.pdf

7 Lee, J. U., Jung, J. W., Emrick, T., Russell, T. P., & Jo, W. H. (2010). Synthesis of C(60)-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 20(16), 3287-3294. http://dx.doi.org/10.1039/b923752f.

8 Hu, X. L., Zuo, L. J., Nan, Y. X., Helgesen, M., Hagemann, O., Bundgaard, E., Shi, M. M., Krebs, F. C., & Chen, H. Z. (2012). Fine tuning the HOMO energy levels of polythene 3,4-b thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications. Synthetic Metals, 162(23), 2005-2009. http://dx.doi.org/10.1016/j.synthmet.2012.10.001.

9 Kim, H., Lee, H., Jeong, Y., Park, J. U., Seo, D., Heo, H., Lee, D., Ahn, Y., & Lee, Y. (2016). Donor acceptor polymers with a regioregularly incorporated thieno 3,4-b thiophene segment as a pi-bridge for organic photovoltaic devices. Synthetic Metals, 211, 75-83. http://dx.doi.org/10.1016/j.synthmet.2015.11.016.

10 Kim, J. H., & Park, J. G. (2015). Effect of donor weight in a P3HT:PCBM blended layer on the characteristics of a polymer photovoltaic cell. Journal of the Korean Physical Society, 66(11), 1720-1725. http://dx.doi.org/10.3938/jkps.66.1720.

11 Bora, C., Sarkar, C., Mohan, K. J., & Dolui, S. (2015). Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochimica Acta, 157, 225-231. http://dx.doi.org/10.1016/j.electacta.2014.12.164.

12 Zhang, J., Li, X. X., Guo, W., Hreid, T., Hou, J. F., Su, H. Q., & Yuan, Z. B. (2011). Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance. Electrochimica Acta, 56(9), 3147-3152. http://dx.doi.org/10.1016/j.electacta.2011.01.063.

13 Vashchenko, A. A., Vitukhnovsky, A. G., Taidakov, I. V., Tananaev, P. N., Vasnev, V. A., Rodlovskaya, E. N., & Bychkovsky, D. N. (2014). Organic light-emitting devices with multi-shell quantum dots connected with polythiophene derivatives. Semiconductors, 48(3), 377-380. http://dx.doi.org/10.1134/S1063782614030269.

14 Qu, B., Feng, L. M., Yang, H. S., Gao, Z., Gao, C., Chen, Z. J., Xiao, L. X., & Gong, Q. H. (2012). Color-stable deep red-emitting OLEDs based on a soluble terpolyrner containing fluorene, thiophene and benzothiadiazole units. Synthetic Metals, 162(17-18), 1587-1593. http://dx.doi.org/10.1016/j.synthmet.2012.06.021.

15 Gupta, N., Grover, R., Mehta, D. S., & Saxena, K. (2016). A simple technique for the fabrication of zinc oxide-PEDOT:PSS nanocomposite thin film for OLED application. Synthetic Metals, 221, 261-267. http://dx.doi.org/10.1016/j.synthmet.2016.09.014.

16 Zhu, L. M., Shi, W., Zhao, R. R., Cao, Y. L., Ai, X. P., Lei, A. W., & Yang, H. X. (2013). n-Dopable polythiophenes as high capacity anode materials for all-organic Li-ion batteries. Journal of Electroanalytical Chemistry, 688, 118-122. http://dx.doi.org/10.1016/j.jelechem.2012.06.019.

17 Zhang, H. Q., Hu, L. W., Tu, J. G., & Jiao, S. Q. (2014). Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor. Electrochimica Acta, 120, 122-127. http://dx.doi.org/10.1016/j.electacta.2013.12.091.

18 Zhen, S., Ma, X., Lu, B., Ming, S., Lin, K., Zhao, L., Xu, J., & Zhou, W. (2014). Supercapacitor electrodes based on furan-EDOT copolymers via electropolymerization. International Journal of Electrochemical Science, 9(12), 7518-7527. Retrieved in 2019, May 12, from http://www.electrochemsci.org/papers/vol9/91207518.pdf

19 Ates, M., & Arican, F. (2015). Electrocoated films of poly(N-methylpyrrole-co-2,2 '-Bithitiophene-co-3-(Octylthiophene)), characterizations, and capacitor study. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(3), 125-133. http://dx.doi.org/10.1080/00914037.2014.909423.

20 Hu, F. Q., Xue, Y., Xu, J. K., & Lu, B. Y. (2019). PEDOT-based conducting polymer actuators. Frontiers in Robotics and AI, 6, 17. http://dx.doi.org/10.3389/frobt.2019.00114.

21 Yuk, H., Lu, B. Y., & Zhao, X. H. (2019). Hydrogel bioelectronics. Chemical Society Reviews, 48(6), 1642-1667. http://dx.doi.org/10.1039/C8CS00595H. PMid:30474663.

22 Lu, B. Y., Yuk, H., Lin, S. T., Jian, N. N., Qu, K., Xu, J. K., & Zhao, X. H. (2019). Pure PEDOT:PSS hydrogels. Nature Communications, 10(1), 1043. http://dx.doi.org/10.1038/s41467-019-09003-5. PMid:30837483.

23 Dyer, A. L., Craig, M. R., Babiarz, J. E., Kiyak, K., & Reynolds, J. R. (2010). Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes. Macromolecules, 43(10), 4460-4467. http://dx.doi.org/10.1021/ma100366y.

24 Zhang, Z. Q., Liu, W. Q., Yan, J. L., Shi, M. M., & Chen, H. Z. (2016). A bipolar diketopyrrolopyrrole molecule end capped with thiophene-2,3-dicarboxylate used as both electron donor and acceptor for organic solar cells. Synthetic Metals, 222, 211-218. http://dx.doi.org/10.1016/j.synthmet.2016.10.022.

25 Chotsuwan, C., Asawapirom, U., Shimoi, Y., Akiyama, H., Ngamaroonchote, A., Jiemsakul, T., & Jiramitmongkon, K. (2017). Investigation of the electrochromic properties of tri-block polyaniline-polythiophene-polyaniline under visible light. Synthetic Metals, 226, 80-88. http://dx.doi.org/10.1016/j.synthmet.2017.02.001.

26 Capan, A., & Ozturk, T. (2014). Electrochromic properties of 3-arylthieno 3,2-b thiophenes. Synthetic Metals, 188, 100-103. http://dx.doi.org/10.1016/j.synthmet.2013.11.018.

27 Gora, M., Pluczyk, S., Zassowski, P., Krzywiec, W., Zagorska, M., Mieczkowski, J., Lapkowski, M., & Pron, A. (2016). EPR and UV-vis spectroelectrochemical studies of diketopyrrolopyrroles disubstituted with alkylated thiophenes. Synthetic Metals, 216, 75-82. http://dx.doi.org/10.1016/j.synthmet.2015.09.012.

28 Vogel, S., & Holze, R. (2005). Spectroelectrochernistry of intrinsically conducting aniline-thiophene copolymers. Electrochimica Acta, 50(7-8), 1587-1595. http://dx.doi.org/10.1016/j.electacta.2004.10.017.

29 Zagorska, M., Kulszewicz-Bajer, I., Pron, A., Sukiennik, J., Raimond, P., Kajzar, F., Attias, A. J., & Lapkowski, M. (1998). Preparation and spectroscopic and spectroelectrochemical characterization of copolymers of 3-alkylthiophenes and thiophene functionalized with an azo chromophore. Macromolecules, 31(26), 9146-9153. http://dx.doi.org/10.1021/ma9806561.

30 Alakhras, F. (2016). Spectroelectrochemistry of intrinsically conducting selenophene-3-chlorothiophene copolymers. Journal of the Brazilian Chemical Society, 27(5), 941-949. http://dx.doi.org/10.5935/0103-5053.20150349.

31 Yigitsoy, B., Varis, S., Tanyeli, C., Akhmedov, I. M., & Toppare, L. (2007). Electrochromic properties of a novel low band gap conductive copolymer. Electrochimica Acta, 52(23), 6561-6568. http://dx.doi.org/10.1016/j.electacta.2007.04.083.

32 Chen, J. H., Dai, C.-A., & Chiu, W.-Y. (2008). Synthesis of highly conductive EDOT copolymer films via oxidative chemical in situ polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 46(5), 1662-1673. http://dx.doi.org/10.1002/pola.22508.

33 Ates, M., & Ekmen, I. (2018). Capacitance behaviors of EDOT and pyrrole copolymer, and equivalent circuit model. Materials Research Innovations, 22(1), 22-36. http://dx.doi.org/10.1080/14328917.2016.1265258.

34 Kulandaivalu, S., Zainal, Z., & Sulaiman, Y. (2015). A new approach for electrodeposition of poly (3, 4-ethylenedioxythiophene)/polyaniline (PEDOT/PANI) copolymer. International Journal of Electrochemical Science, 10(11), 8926-8940. Retrieved in 2019, May 12, from http://http://www.electrochemsci.org/papers/vol10/101108926.pdf

35 Yijie, T., Kai, Z., Zhaoyang, Z., Haifeng, C., Chunlin, J., & Yulei, Z. (2016). Synthesis, characterizations, and electrochromic properties of donor-acceptor type polymers containing 2, 1, 3-benzothiadiazole and different thiophene donors. Journal of Polymer Science. Part A, Polymer Chemistry, 54(14), 2239-2246. http://dx.doi.org/10.1002/pola.28097.

36 Araujo, M. H., Matencio, T., Donnici, C. L., & Calado, H. D. R. (2016). Synthesis and electrochemical investigation of beta-substituted thiophene-based donor-acceptor copolymers with 3,4-ethylenedioxythiophene (EDOT). Journal of Solid State Electrochemistry, 20(9), 2541-2550. http://dx.doi.org/10.1007/s10008-016-3297-1.

37 Bechinger, C., Burdis, M. S., & Zhang, J. G. (1997). Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Communications, 101(10), 753-756. http://dx.doi.org/10.1016/S0038-1098(96)00703-X.

38 Bobacka, J., Lewenstam, A., & Ivaska, A. (2000). Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. Journal of Electroanalytical Chemistry, 489(1-2), 17-27. http://dx.doi.org/10.1016/S0022-0728(00)00206-0.

39 Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. New York: Wiley.

40 Bonazzola, C., & Calvo, E. J. (1998). An electrochemical impedance and spectroelectrochemical study of the polypyrrole-flavin composite electrode. Journal of Electroanalytical Chemistry, 449(1-2), 111-119. http://dx.doi.org/10.1016/S0022-0728(98)00047-3.

41 Bredas, J. L., & Street, G. B. (1985). Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research, 18(10), 309-315. http://dx.doi.org/10.1021/ar00118a005.

42 Spencer, H. J., Skabara, P. J., Giles, M., McCulloch, I., Coles, S. J., & Hursthouse, M. B. (2005). The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDOT by analogy with well-defined EDTT-EDOT copolymers. Journal of Materials Chemistry, 15(45), 4783-4792. http://dx.doi.org/10.1039/b511075k.

43 Zhao, H., Tang, D. D., Zhao, J. S., Wang, M., & Dou, J. M. (2014). Two novel ambipolar donor-acceptor type electrochromic polymers with the realization of RGB (red-green-blue) display in one polymer. RSC Advances, 4(106), 61537-61547. http://dx.doi.org/10.1039/C4RA11628C.

44 Data, P., Zassowski, P., Lapkowski, M., Domagala, W., Krompiec, S., Flak, T., Penkala, M., Swist, A., Soloducho, J., & Danikiewicz, W. (2014). Electrochemical and spectroelectrochemical comparison of alternated monomers and their copolymers based on carbazole and thiophene derivatives. Electrochimica Acta, 122, 118-129. http://dx.doi.org/10.1016/j.electacta.2013.11.167.

45 Yigit, D., Udum, Y. A., Gullu, M., & Toppare, L. (2014). Electrochemical and spectroelectrochemical studies of poly(2,5-di-2,3-dihydrothieno 3,4-b 1,4 dioxin-5-ylthienyl) derivatives bearing azobenzene, coumarine and fluorescein dyes: effect of chromophore groups on electrochromic properties. Electrochimica Acta, 147, 669-677. http://dx.doi.org/10.1016/j.electacta.2014.09.053.

46 Wang, Z., Xu, J. K., Lu, B. Y., Zhang, S. M., Qin, L. Q., Mo, D. Z., & Zhen, S. J. (2014). Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir, 30(51), 15581-15589. http://dx.doi.org/10.1021/la503948f. PMid:25469424.

47 Lu, B. Y., Zhen, S. J., Zhang, S. M., Xu, J. K., & Zhao, G. Q. (2014). Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polymer Chemistry, 5(17), 4896-4908. http://dx.doi.org/10.1039/C4PY00529E.

48 Ming, S. L., Zhen, S. J., Liu, X. M., Lin, K. W., Liu, H. T., Zhao, Y., Lu, B. Y., & Xu, J. K. (2015). Chalcogenodiazolo [3,4-c]pyridine based donor-acceptor-donor polymers for green and nearinfrared electrochromics. Polymer Chemistry, 6(48), 8248-8258. http://dx.doi.org/10.1039/C5PY01321F.

49 Ming, S. L., Zhen, S. J., Lin, K. W., Zhao, L., Xu, J. K., & Lu, B. Y. (2015). Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor-acceptor-type electrochromic polymer with low bandgap. ACS Applied Materials & Interfaces, 7(21), 11089-11098. http://dx.doi.org/10.1021/acsami.5b01188. PMid:25955881.

50 Gu, H., Ming, S. L., Lin, K. W., Chen, S., Liu, X. M., Lu, B. Y., & Xu, J. K. (2018). Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics. Electrochimica Acta, 260, 772-782. http://dx.doi.org/10.1016/j.electacta.2017.12.033.

51 Vorotyntsev, M. A., Deslouis, C., Musiani, M. M., Tribollet, B., & Aoki, K. (1999). Transport across an electroactive polymer film in contact with media allowing both ionic and electronic interfacial exchange. Electrochimica Acta, 44(12), 2105-2115. http://dx.doi.org/10.1016/S0013-4686(98)00318-1.

52 Pajkossy, T., & Kolb, D. M. (2007). Double layer capacitance of the platinum group metals in the double layer region. Electrochemistry Communications, 9(5), 1171-1174. http://dx.doi.org/10.1016/j.elecom.2007.01.002.

53 Pajkossy, T., & Kolb, D. M. (2001). Double layer capacitance of Pt(111) single crystal electrodes. Electrochimica Acta, 46(20-21), 3063-3071. http://dx.doi.org/10.1016/S0013-4686(01)00597-7.
 

5f1086a40e8825206e5a5964 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections