Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Rheological and thermal properties of EVA-organoclay systems using an environmentally friendly clay modifiera

Reinaldo Yoshio Morita; Juliana Regina Kloss; Ronilson Vasconcelos Barbosa; Bluma Guenther Soares; Luis Carlos Oliveira da Silva; Ana Lúcia Nazareth da Silva

Downloads: 0
Views: 269


EVA systems, using an environmentally friendly organoclay modified with a non-ionic and free of ammonium ions modifier (BN-AM), were prepared in a single-screw laboratory extruder and characterized by rheological, morphological and thermal properties. WAXD analysis suggested that the nanocomposites with 1.5 wt% of BN-AM presented an exfoliated structure, while the rheological results showed that the nanocomposites with BN-AM organoclay tended to present a more pronounced shear thinning behavior when compared to EVA and the nanocomposites with the traditional organoclay. The SEM/EDS analysis by using elemental mappings showed good dispersion of the organoclays (BN-AM and BN-CT) in the EVA matrix. Thermogravimetry analysis showed an improvement in thermal stability of EVA when the non-ionic modifier was used instead of the traditional one. In general, it was concluded that the addition of low content of BN-AM organoclay in EVA matrices is a promising option for the production of nanocomposites.


EVA nanocomposite, organoclay, rheological property, thermal property, morphology


1 Oreski, G., Wallner, G., & Lang, R. (2009). Ageing characterization of commercial ethylene copolymer greenhouse films by analytical and mechanical methods. Biosystems Engineering, 103(4), 489-496. http://dx.doi.org/10.1016/j.biosystemseng.2009.05.003.

2 Maraveas, C. (2019). Environmental sustainability of greenhouse covering materials. Sustainability, 11(21), 6129. http://dx.doi.org/10.3390/su11216129.

3 Henderson, A. (1993). Ethylene-vinyl acetate (EVA) copolymers: a general review. IEEE Electrical Insulation Magazine, 9(1), 30-38. http://dx.doi.org/10.1109/57.249923.

4 Ismail, N. H., & Mustapha, M. (2018). A review of thermoplastic elastomeric nanocomposites for high voltage insulation applications. Polymer Engineering and Science, 58(S1), E36-E63. http://dx.doi.org/10.1002/pen.24822.

5 Paul, D., & Robeson, L. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017.

6 Ma, J., Duan, Z., Xue, C., & Deng, F. (2013). Morphology and mechanical properties of EVA/OMMT nanocomposite foams. Journal of Thermoplastic Composite Materials, 26(4), 555-569. http://dx.doi.org/10.1177/0892705712458943.

7 Měřínská, D., Pata, V., Sýkorová, L., & Šuba, O. (2019) Clay/EVA copolymer nanocomposite: processing and properties. In B. Gapiński, M. Szostak, & V. Ivanov (Eds.), Advances in manufacturing II (pp. 507-517). Switzerland: Springer Nature. http://dx.doi.org/10.1007/978-3-030-16943-5_43

8 Cárdenas, M. Á., Basurto, F. C., García-López, D., Merino, J. C., & Pastor, J. M. (2013). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites: effect of functionalization of organoclay nanofillers. Polymer Bulletin, 70(8), 2169-2179. http://dx.doi.org/10.1007/s00289-013-0925-0.

9 Bae, J. W., Yang, T. U., Nam, G. J., Lee, G. J., Nam, B.-U., & Jho, J. Y. (2011). Dispersion and flame retardancy of ethylene vinyl acetate/layered silicate nanocomposites using the masterbatch approach for cable insulating material. Polymer Bulletin, 67(4), 729-740. http://dx.doi.org/10.1007/s00289-011-0498-8.

10 Yue, X., Li, C., Ni, Y., Xu, Y., & Wang, J. (2019). Flame retardant nanocomposites based on 2D layered nanomaterials: a review. Journal of Materials Science, 54(20), 13070-13105. http://dx.doi.org/10.1007/s10853-019-03841-w.

11 Urresti, O., González, A., Fernández-Berridi, M., Iruin, J., & Irusta, L. (2011). Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation. Journal of Membrane Science, 373(1–2), 173-177. http://dx.doi.org/10.1016/j.memsci.2011.03.003.

12 Cui, Y., Kumar, S., Kona, B. R., & Van Houcke, D. (2015). Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 5(78), 63669-63690. http://dx.doi.org/10.1039/C5RA10333A.

13 Drozdov, A. D., & Christiansen, J. C. (2020). Micromechanical modeling of barrier properties of polymer nanocomposites. Composites Science and Technology, 189, 108002. http://dx.doi.org/10.1016/j.compscitech.2020.108002.

14 Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R Reports, 53(3-4), 73-197. http://dx.doi.org/10.1016/j.mser.2006.06.001.

15 Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002.

16 Leite, I. F., Malta, O. L., Raposo, C. M. O., Canedo, L. E., Carvalho, L. H., & Silva, S. M. L. (2011). Efeito de diferentes tipos de argilas e modificadores orgânicos na morfologia e propriedades térmicas dos nanocompósitos de PET. Polímeros: Ciência e Tecnologia, 21(3), 195-203. http://dx.doi.org/10.1590/S0104-14282011005000035.

17 Zhang, W., Chen, D., Zhao, Q., & Fang, Y. (2003). Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer, 44(26), 7953-7961. http://dx.doi.org/10.1016/j.polymer.2003.10.046.

18 Rahman, M., Zahin, F., Saadi, M. A. R., Sharif, A., & Hoque, M. E. (2018). Surface modification of advanced and polymer nanocomposites. In N. Dasgupta, S. Ranjan, & E. Lichtfouse (Eds.), Environmental nanotechnology. Cham: Springer. http://dx.doi.org/10.1007/978-3-319-76090-2_6

19 Zhang, W., Chen, D., Zhao, Q., & Fang, Y. (2003). Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites. Polymer, 44(26), 7953-7961. http://dx.doi.org/10.1016/j.polymer.2003.10.046.

20 Ugel, E., Giuliano, G., & Modesti, M. (2011). Poly(ethylene–co–vinyl acetate)/clay nanocomposites: effect of clay nature and compatibilising agents on morphological thermal and mechanical properties. Soft Nanoscience Letters, 01(04), 105-119. http://dx.doi.org/10.4236/snl.2011.14018.

21 Lee, K. M., & Han, C. D. (2003). Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules, 36(19), 7165-7178. http://dx.doi.org/10.1021/ma030302w.

22 Cui, L., Khramov, D. M., Bielawski, C. W., Hunter, D. L., Yoon, P. J., & Paul, D. R. (2008). Effect of organoclay purity and degradation on nanocomposite performance, Part 1: surfactant degradation. Polymer, 49(17), 3751-3761. http://dx.doi.org/10.1016/j.polymer.2008.06.029.

23 Wang, G., Wang, S., Sun, Z., Zheng, S., & Xi, Y. (2017). Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye. Applied Clay Science, 148, 1-10. http://dx.doi.org/10.1016/j.clay.2017.08.001.

24 Zhuang, G., Zhang, Z., & Jaber, M. (2019). Organoclays used as colloidal and rheological additives in oil-based drilling fluids: an overview. Applied Clay Science, 177, 63-81. http://dx.doi.org/10.1016/j.clay.2019.05.006.

25 Morita, R. Y., Kloss, J. R., & Barbosa, R. V. (2014). Characterization of mechanical and thermal properties of poly(ethylene-co-vinyl acetate) with differents bentonites. Macromolecular Symposia, 343(1), 88-95. http://dx.doi.org/10.1002/masy.201300198.

26 Carli, L. N., Daitx, T. S., Guégan, R., Giovanela, M., Crespo, J. S., & Mauler, R. S. (2014). Biopolymer nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) reinforced by a non-ionic organoclay. Polymer International, 64(2), 235-241. http://dx.doi.org/10.1002/pi.4781.

27 Morita, R. Y., Kloss, J. R., & Barbosa, R. V. (2015). Caracterização de bentonitas sódicas: efeito o tratamento com surfactante orgânico livre de sal de amônio. Revista Virtual de Química, 7(4), 1286-1298. http://dx.doi.org/10.5935/1984-6835.20150071.

28 Iodice, B., Torrens, G. L., Kloss, J. R., Reis, D. M., & Jarek, F. (2010) BR nº PI 10013121. Processo de obtenção de nanoargila modificada para a produção de nanocompósitos poliméricos e nanoargila modificada.

29 Iodice, B., Morita, R. Y., Kloss, J. R., Torrens, G. L., & Barbosa, R. V. (2013) WO 2013/185196 A1. Use of an ammonium salt-free organophilic nanostructured clay in polyethylene.

30 Pistor, V., Lizot, A., Fiorio, R., & Zattera, A. J. (2010). Influence of physical interaction between organoclay and poly(ethylene-co-vinyl acetate) matrix and effect of clay content on rheological melt state. Polymer, 51(22), 5165-5171. http://dx.doi.org/10.1016/j.polymer.2010.08.045.

31 Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. http://dx.doi.org/10.1016/0167-2738(86)90057-3.

32 Jiang, L., Zhang, J., & Wolcott, M. P. (2007). Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer, 48(26), 7632-7644. http://dx.doi.org/10.1016/j.polymer.2007.11.001.

33 La Mantia, F. P., Scaffaro, R., Ceraulo, M., Mistretta, M. C., Dintcheva, N. T. Z., & Botta, L. (2016). A simple method to interpret the rheological behavior of intercalated polymer nanocomposites. Composites. Part B, Engineering, 98, 382-388. http://dx.doi.org/10.1016/j.compositesb.2016.05.045.

34 Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S., & Bretas, R. E. S. (2008). Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. European Polymer Journal, 44(5), 1346-1357. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.014.

35 Son, D., Cho, S., Nam, J., Lee, H., & Kim, M. (2020). X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers, 12(5), 1053. http://dx.doi.org/10.3390/polym12051053. PMid:32375363.

36 Malkin, A. Y. (1994). Rheology fundamentals. Toronto: ChemTec Publishing.

37 Oliveira, A. G., Moreno, J. F., de Sousa, A. M. F., Escócio, V. A., Guimarães, M. J. O. C., & da Silva, A. L. N. (2020). Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers. Polymer Bulletin, 77(6), 2889-2904. http://dx.doi.org/10.1007/s00289-019-02887-9.

38 Allen, N. S., Edge, M., Rodriguez, M., Liauw, C. M., & Fontan, E. (2000). Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polymer Degradation & Stability, 68(3), 363-371. http://dx.doi.org/10.1016/S0141-3910(00)00020-3.

39 Rimez, B., Rahier, H., Van Assche, G., Artoos, T., Biesemans, M., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: experimental study of the degradation mechanism. Polymer Degradation & Stability, 93(4), 800-810. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.010.

40 He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53(3), 287-293. http://dx.doi.org/10.1346/CCMN.2005.0530308.

41 Beltrán, M. I., Benavente, V., Marchante, V., Dema, H., & Marcilla, A. (2014). Characterization of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios: properties of these modified montmorillonites EVA nanocomposites. Applied Clay Science, 97-98, 43-52. http://dx.doi.org/10.1016/j.clay.2014.06.001.

6037b24ca953954c891f0823 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections