Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates

Nabil Hayeemasae; Abdulhakim Masa

Downloads: 1
Views: 614


It is well-recognized that different sulphur curing systems have greatly influenced to the final properties of the rubber vulcanizates. In this study, the properties of vulcanizates with conventional vulcanization (CV) and efficiency vulcanization (EV) systems were correlated in the aspect of stress relaxation and thermal stability. The stress relaxation behaviour and thermal stability were studied with the temperature scanning stress relaxation (TSSR) and with thermogravimatric analysis (TGA) techniques, respectively. Thermo-oxidative degradation of rubber chains in the CV system was greater than the EV system, leading to easier stress relaxation and poorer aging resistance of the CV system. Also, thermal stability of the rubber crosslinked with CV system was poorer than that with the EV system as corroborated by the activation energy of degradation. TSSR result correlated well with TGA result, and both revealed type of crosslinkages governed the thermo-oxidative degradation and thermal stability of vulcanizates.



natural rubber, stress relaxation, thermal stability, crosslink system


1 Coran, A. Y. (2013). Vulcanization. In B. Erman, J. E. Mark, & C. M. Roland (Eds.), The science and technology of rubber (pp. 337-381). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-12-394584-6.00007-8.

2 Khan, I., & Bhat, A. H. (2014). Micro and nano calcium carbonate filled natural rubber composites and nanocomposites. In S. Thomas, C. H. Chan, L. Pothen, J. Joy, & H. Maria (Eds.), Natural rubber materials, vol 2: Composites and nanocomposites (pp. 467-487). Cambridge: Royal Society of Chemistry.

3 Coran, A. Y. (1995). Vulcanization: Conventional and dynamic. Rubber Chemistry and Technology, 68(3), 351-375. http://dx.doi.org/10.5254/1.3538748.

4 Hoover, F. I., & To, B. H. (2004). Vulcanization. In B. Rodgers (Ed.), Rubber compounding: Chemistry and applications (pp. 505-568). New York: Marcel Dekker Inc.

5 Ciullo, P. A., & Hewitt, N. (1999). The rubber formulary. New York: William Andrew.

6 Datta, R. N. (2002). Rubber curing systems. Shawbury: Smithers Rapra Technology.

7 Linhares, F. N., Kersch, M., Niebergall, U., Moreira Leite, M. C. A., Atlstadt, V., & Furtado, C. R. G. (2017). Effect of different sulphur-based crosslink networks on the nitrile rubber resistance to biodiesel. Fuel, 191, 130-139. http://dx.doi.org/10.1016/j.fuel.2016.11.060.

8 Pimolsiriphol, V., Saeoui, P., & Sirisinha, C. (2007). Relationship among thermal ageing degradation, dynamic properties, cure systems, and antioxidants in natural rubber. Polymer-Plastics Technology and Engineering, 46(2), 113-121. http://dx.doi.org/10.1080/03602550601152861.

9 Bhowmick, A. K., & Mangaraj, D. (1994). Vulcanization and curing techniques. In A. K. Bhowmick, M. M. Hall, & H. A. Benarey (Eds.), Rubber products manufacturing technology (pp. 315-396). New York: Marcel Dekker Inc.

10 Larpkasemsuk, A., Raksaksri, L., Chuayjuljit, S., Chaiwuthinan, P., & Boonmahidthisud, A. (2019). Effects of sulfur vulcanization system on cure characteristics, physical properties and thermal aging of epoxidized natural rubber. Journal of Metals Materials and Minerals, 29(1), 49-57.

11 Boonkerd, K., Deeprasertkul, C., & Boonsomwong, K. (2016). Effect of sulfur to accelerator ratio on crosslink structure reversion, and strength in natural rubber. Rubber Chemistry and Technology, 89(3), 450-464. http://dx.doi.org/10.5254/rct.16.85963.

12 Rattanasom, N., Poonsuk, A., & Makmoon, T. (2005). Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends. Polymer Testing, 24(6), 728-732. http://dx.doi.org/10.1016/j.polymertesting.2005.04.008.

13 Vennemann, N., Bokamp, K., & Broker, D. (2006). Crosslink density of peroxide cured TPV. Macromolecular Symposia, 245-246(1), 641-650. http://dx.doi.org/10.1002/masy.200651391.

14 Vennemann, N., Schwarze, C., & Kummerlowe, C. (2014). Determination of crosslink density and network structure of NR Vulcanizates by means of TSSR. Advanced Materials Research, 844, 482-485. http://dx.doi.org/10.4028/www.scientific.net/AMR.844.482.

15 Oncel, S., Kurtoglu, B., & Karaagac, B. (2019). An alternative antioxidant for sulfur-vulcanized natural rubber: henna. Journal of Elastomers and Plastics, 51(5), 440-456. http://dx.doi.org/10.1177/0095244318796594.

16 Karaagac, B., Cengiz, S. C., Bayram, T., & Sen, M. (2018). Identification of temperature scanning stress relaxation behaviors of new grade ethylene propylene diene elastomers. Advances in Polymer Technology, 37(8), 3027-3037. http://dx.doi.org/10.1002/adv.21973.

17 Khang, T. H., & Ariff, Z. M. (2012). Vulcanization kinetics study of natural rubber compounds having different formulation variables. Journal of Thermal Analysis and Calorimetry, 109(3), 1545-1553. http://dx.doi.org/10.1007/s10973-011-1937-3.

18 Kok, C. M. (1987). The effects of compounding variables on the reversion process in the sulphur vulcanization of natural rubber. European Polymer Journal, 23(8), 611-615. http://dx.doi.org/10.1016/0014-3057(87)90006-1.

19 Srinivasan, N., Bokamp, K., & Vennemann, N. (2005). New test method for the characterisation of filled elastomers. KGK. Kautschuk, Gummi, Kunststoffe, 2005(58), 650.

20 Alwaan, I. M., & Hassan, A. (2014). Pyrolysis, kinetic and kinetic model study of epoxidized natural rubber. Progress in Rubber, Plastics and Recycling Technology, 30(3), 153-168. http://dx.doi.org/10.1177/147776061403000303.

21 Chrissafis, K. (2009). Kinetics of thermal degradation of polymer, complementary use of isoconversional and model-fitting methods. Journal of Thermal Analysis and Calorimetry, 95(1), 273-283. http://dx.doi.org/10.1007/s10973-008-9041-z.

22 Jung, C., Jana, S. C., & Gunes, I. S. (2007). Analysis of polymerization in chaotic mixers using time scales of mixing and chemical reactions. Industrial & Engineering Chemistry, 46(8), 2413-2422. http://dx.doi.org/10.1021/ie0613319.

23 Verhoeven, V. W. A., van Vondel, M. P. Y., Ganzeveld, K. J., & Janssen, L. P. B. M. (2004). Rheo‐kinetic measurement of thermoplastic polyurethane polymerization in a measurement kneader. Polymer Engineering and Science, 44(9), 1648-1655. http://dx.doi.org/10.1002/pen.20163.

24 Rabiei, S., & Shojaei, A. (2016). Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond - The role of sulfur curing system. European Polymer Journal, 81, 98-113. http://dx.doi.org/10.1016/j.eurpolymj.2016.05.021.

25 Akiba, M., & Hashim, A. S. (1997). Vulcanization and crosslinking in elastomer. Progress in Polymer Science, 22(3), 475-521. http://dx.doi.org/10.1016/S0079-6700(96)00015-9.

26 Surya, I., & Ismail, H. (2016). Alkanolamide as a novel accelerator and vulcanising agent in carbon black-filled polychloroprene rubber compounds. Plastics, Rubber and Composites, 45(7), 287-293. http://dx.doi.org/10.1080/14658011.2016.1187477.

27 Barbe, A., Bokamp, K., Kummerlowe, C., Sollmann, H., Vennemann, N., & Vinzelberg, S. (2005). Investigation of modified SEBS-based thermoplastic elastomers by temperature scanning stress relaxation measurements. Polymer Engineering and Science, 45(11), 1498-1507. http://dx.doi.org/10.1002/pen.20427.

28 Hayeemasae, N., Ismail, H., Matchawet, S., & Masa, A. (2019). Kinetic of thermal degradation and thermal stability of natural rubber filled with titanium dioxide nanoparticles. Polymer Composites, 40(8), 3149-3155. http://dx.doi.org/10.1002/pc.25163.

29 Tripathy, S. P., Mishra, R., Fink, D., & Dwivedi, K. K. (2004). Irradiation effect on the activation energy of thermal decomposition of polymers. Radiation Effects and Defects in Solids, 159(11-12), 607-612. http://dx.doi.org/10.1080/10420150412331330502.

5f6deb8e0e8825c40697b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections