Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Controlled release fertilizer encapsulated by a κ-carrageenan hydrogel

Rozo, Gladys; Bohorques, Laura; Santamaría, Johanna

Downloads: 0
Views: 174


The release kinetics of nitrogen and phosphorous of a granulated fertilizer, encapsulated in a κ-carrageenan-based hydrogel (CBH), was evaluated in order to determine its release mechanism given the potential this hydrogel has as coating material for controlled release fertilizers (CFRs). The effect of pH on the release properties was also investigated. The relationship between the NH4+, NO3-, and PO43- release of encapsulated fertilizers and time was determined by short- and long-term laboratory incubations. The mechanism of the release of nutrient ions was determined by comparing the release data with the zero-order, first-order, Higuchi, Hixon-Crowell and Korsmeyer-Peppas kinetic models. The findings showed that the Korsmeyer-Peppas model could be used to describe the release characteristics of the nutrients in the encapsulated fertilizers and that non-Fickian diffusion is the main release mechanism. The experimental hydrogel showed a high water retention capacity able to absorb 300 times its weight water.


carrageenan; controlled release fertilizers; hydropolymers; release behavior.


1 Russel, D. A., & Williams, G. G. (1977). History of chemical fertilizer development. Soil Science Society of America Journal41(2), 260-265. http://dx.doi.org/10.2136/sssaj1977.03615995004100020020x.

2 Food and Agriculture Organization – FAO. (1981). Crop production levels and fertilizer use (FAO Fertilizer and Plant Nutrition Bulletin; no. 2). Rome: FAO.

3 Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature418(6898), 671-677. http://dx.doi.org/10.1038/nature01014. PMid:12167873. 

4 Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio31(2), 132-140. http://dx.doi.org/10.1579/0044-7447-31.2.132. PMid:12078002. 

5 Smil, V. (2000). Phosphorus in the environment: natural flows and human interferences. Annual Review of Energy and the Environment25(1), 53-88. http://dx.doi.org/10.1146/annurev.energy.25.1.53

6 Bouwman, A. F., Boumans, L. J. M., & Batjes, N. H. (2002). Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochemical Cycles16(4), 6-13. http://dx.doi.org/10.1029/2001GB001811

7 Zhao, B. Q;, Li, X. Y., Liu, H., Wang, B. R., Zhu, P., Huang, S. M., Bao, D. J., Li, Y. T., & So, H. B. (2011). Results from long-term fertilizer experiments in China: the risk of groundwater pollution by nitrate. NJAS Wageningen Journal fo Life Siences, 58, 177-183. 

8 Ongley, O. D. (1996). Control of water pollution from agriculture (FAO Irrigation and Drainage; Paper No. 55) Rome: Food and Agriculture Organization of the United Nations. 

9 Bhatia, A., Pathak, H., & Aggarwal, P. K. (2004). Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Current Science87(3), 317-324. 

10 Withers, P. J. A., Neal, C., Jarvie, H. P., & Doody, D. G. (2014). Agriculture and eutrophication: where do we go from here? Sustainability6(9), 5853-5875. http://dx.doi.org/10.3390/su6095853

11 Molina-Herrera, S., Haas, E., Klatt, S., Kraus, D., Augustin, J., Magliulo, V., Tallec, T., Ceschia, E., Ammann, C., Loubet, B., Skiba, U., Jones, S., Brümmer, C., Butterbach-Bahl, K., & Kiese, R. (2016). Modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using Landscape DNDC. The Science of the Total Environment553, 128-140. http://dx.doi.org/10.1016/j.scitotenv.2015.12.099. PMid:26909705. 

12 Naz, M. Y., & Sulaiman, A. S. (2016). Slow release coating remedy for nitrogen loss from conventional urea: a review. Journal of Controlled Release225, 109-120. http://dx.doi.org/10.1016/j.jconrel.2016.01.037. PMid:26809006. 

13 Cong, Z., Yazhen, S., Changwen, D., Jianmin, Z., Huoyan, W., & Xiaoqin, C. (2010). Evaluation of waterborne coating for controlled release fertilizer using wursterfluidized bed. Industrial & Engineering Chemistry Research49(20), 9644-9647. http://dx.doi.org/10.1021/ie101239m

14 Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials and methods to produce controlled release coated urea fertilizer. Journal of Controlled Release181, 11-21. http://dx.doi.org/10.1016/j.jconrel.2014.02.020. PMid:24593892. 

15 Ali, S., & Danafar, F. (2015). Controlled-release fertilizers: advances and challenges. Life Science Journal12(11), 33-45.

16 Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. European Polymer Journal72, 365-385. http://dx.doi.org/10.1016/j.eurpolymj.2015.04.017

17 Shaviv, A., & Mikkelsen, R. L. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation: a review. Nutrient Cycling in Agroecosystems35(1-2), 1-22. 

18 Yang, X., Geng, J., Li, C., Zhang, M., & Tian, X. (2016). Cumulative release characteristics of controlled-release nitrogen and potassium fertilizers and their effects on soil fertility, and cotton growth. Scientific Reports6(1), 39030. http://dx.doi.org/10.1038/srep39030. PMid:27966638. 

19 Chen, J., Lu, S., Zhang, Z., Zhao, X., Li, X., Ning, P., & Liu, M. (2018). Environmentally friendly fertilizers: a review of materials used and their effects on the environment. The Science of the Total Environment, 613-614, 829-839. http://dx.doi.org/10.1016/j.scitotenv.2017.09.186. PMid:28942316. 

20 Campos, E. V. R., Oliveira, J. L., Fraceto, L. F., & Singh, B. (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development35(1), 47-66. http://dx.doi.org/10.1007/s13593-014-0263-0

21 Wang, J., Liu, S., Qin, Y., Chen, X., Xing, R., Yu, H., Li, K., & Li, P. (2017). Preparation and characterization of controlled release fertilizers coated with marine polysaccharide derivatives. Chinese Journal of Oceanology and Limnology35(5), 1086-1093. http://dx.doi.org/10.1007/s00343-017-6074-9

22 Mishra, M. M., Yadav, M., Sand, A., Tripathy, J., & Behari, K. (2010). Water soluble graft copolymer (κ-carrageenan-g-N-vinyl formamide): Preparation, characterization and application. Carbohydrate Polymers80(1), 235-241. http://dx.doi.org/10.1016/j.carbpol.2009.11.009

23 Nakhjiri, M. T., Marandi, G. B., & Kurdtabar, M. (2018). Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation. International Journal of Biological Macromolecules117, 152-166. http://dx.doi.org/10.1016/j.ijbiomac.2018.05.140. PMid:29802921. 

24 Pettinelli, N., Rodríguez-Llamazares, S., Abella, V., Barral, L., Bouza, R., Farrag, Y., & Lago, F. (2019). Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: effect on swelling and mechanical properties. Materials Science and Engineering C96, 583-590. http://dx.doi.org/10.1016/j.msec.2018.11.071. PMid:30606569. 

25 Santamaría Vanegas, J., Rozo Torres, G., & Barreto Campos, B. (2019). Characterization of a κ-Carrageenan Hydrogel and its Evaluation as a Coating Material for Fertilizers. Journal of Polymers and the Environment27(4), 774-783. http://dx.doi.org/10.1007/s10924-019-01384-4

26 Weiner, M. L., Nuber, D., Blakemore, W. R., Harriman, J. F., & Cohen, S. M. (2007). A 90-day dietary study on kappa carrageenan with emphasis on the gastrointestinal tract. Food and Chemical Toxicology45(1), 98-106. http://dx.doi.org/10.1016/j.fct.2006.07.033. PMid:17034924. 

27 Weiner, M. L. (2016). Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study. Food and Chemical Toxicology87, 31-44. http://dx.doi.org/10.1016/j.fct.2015.11.014. PMid:26615870.

28 Campo, V. L., Kawano, D. F., Silva, D. B. Jr, & Carvalho, I. (2009). Carrageenans: biological properties, chemical modifications and structural analysis – A review. Carbohydrate Polymers77(2), 167-180. http://dx.doi.org/10.1016/j.carbpol.2009.01.020

29 Wang, Y., Liu, M., Ni, B., & Xie, L. (2012). κ-Carrageenan-sodium alginate beads and superabsorbet coated nitrogen fertilizer with slow release, water retention, and anticompaction properties. Industrial & Engineering Chemistry Research51(3), 1413-1422. http://dx.doi.org/10.1021/ie2020526

30 Rhim, J. W., & Wang, L. (2013). Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydrate Polymers96(1), 71-81. http://dx.doi.org/10.1016/j.carbpol.2013.03.083. PMid:23688456. 

31 Shavit, U., Shaviv, A., & Zaslavsky, D. (1995). Solute diffusion coefficient in the internal medium of a new gel based controlled release fertilizer. Journal of Controlled Release37(1), 21-32. http://dx.doi.org/10.1016/0168-3659(95)00043-8

32 Shavit, U., Reiss, M., & Shaviv, A. (2003). Wetting mechanism of gel based controlled-released fertilizers. Journal of Controlled Release88(1), 71-83. http://dx.doi.org/10.1016/S0168-3659(02)00455-8. PMid:12586505. 

33 Sempeho, S. I., Kim, H. T., Mubofu, E., & Hilonga, A. (2014). Meticoulos overview on the controlled release fertilizers. Advances in Chemistry2014(1), 363071. 

34 Trenkel, M. E. (1997). Improving fertilizers use efficiency (Controlled-Release and Stabilized Fertilizers in Agriculture). Paris: International Fertilizer Industry Association. 

35 Fageria, N. K., & Nascente, A. S. (2014). Management of soil acidity of south american soils for sustainable crop production. In D. L. Sparks (Ed.), Advances in agronomy (chap. 6, pp. 221-275). Academic Press. 

36 Food and Agriculture Organization – FAO. (2019). Año internacional de la papa 2008. Rome: FAO. Retrieved in 2019, May 23, from http://www.fao.org/potato-2008/es/lapapa/cultivo.html

37 Marín, J. G. (1985). Fertilidad general de los suelos de cinco zonas paperas de Colombia. Revista ICA20(1), 203-209. 

38 Rozo, G., & Rozo, C. (2012). Colombia patent 08043691: procedure for extracting and purify kappa carrageenan obtained from Hypnea musciformis (Certificate No. 29475; Gazette No. 597). Colombia. 

39 Lin, K., Li, P., Wu, Q., Feng, S., Ma, J., & Yuan, D. (2018). Automated determination of ammonium in natural waters with reverse flow injection analysis based on the indophenol bluemethod with o-phenylphenol. Microchemical Journal138, 519-525. http://dx.doi.org/10.1016/j.microc.2018.02.004

40 Monteiro, M. I. C., Ferreira, F., Oliveira, N. M. M., & Ávila, A. K. (2003). Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta477(1), 125-129. http://dx.doi.org/10.1016/S0003-2670(02)01395-8

41 College of Science University of Canterbury Christchurch New Zealand. (2018). Determination of phosphate concentration in soil. Retrieved in 2018, December 19, from: https://www.canterbury.ac.nz/media/documents/science-outreach/phosphate.pdf 

42 Green, A. A. (1993). The preparation of acetate and phosphate buffer solutions of known pH and ionic strength. Journal of the American Chemical Society55(6), 2331-2336. http://dx.doi.org/10.1021/ja01333a018

43 Elving, P. J., Markowitz, J. M., & Rosenthal, I. (1956). Preparation of buffer systems of constant ionic strength. Analytical Chemistry28(7), 1179-1180. http://dx.doi.org/10.1021/ac60115a034

44 Gouda, R., Baishya, H., & Qing, Z. (2017). Application of mathematical models in drug release kinetics of Carbidopa and Levodopa ER Tablets. Journal of Developing Drugs6(2), 1-8. 

45 Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release5(1), 23-36. http://dx.doi.org/10.1016/0168-3659(87)90034-4.

46 Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release5(1), 37-42. http://dx.doi.org/10.1016/0168-3659(87)90035-6

47 Grassi, M., & Grassi, G. (2005). Mathematical modelling and controlled drug delivery: matrix systems. Current Drug Delivery2(1), 97-116. http://dx.doi.org/10.2174/1567201052772906. PMid:16305412. 

48 Thomas, L. N., & Windle, A. H. (1980). A deformation model for case II diffusion. Polymer21(6), 613-619. http://dx.doi.org/10.1016/0032-3861(80)90316-X

49 Thomas, L. N., & Windle, A. H. (1981). Diffusion mechanics of the system PMMA-methano. Polymer22(5), 627-639. http://dx.doi.org/10.1016/0032-3861(81)90352-9

50 Thomas, L. N., & Windle, A. H. (1982). A theory of case II diffusion. Polymer23(4), 529-542. http://dx.doi.org/10.1016/0032-3861(82)90093-3.

51 Trenkel, M. E. (2010). Slow and controlled release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. Paris: International Fertilizer Industry Association. 

52 Shaviv, A. (2001). Advances in controlled release fertilizers. Advances in Agronomy71, 1-49. http://dx.doi.org/10.1016/S0065-2113(01)71011-5

53 Food and Agriculture Organization of the United Nations – FAO. (2019). Retrieved in 2013, March 20, from http://www.fao.org/potato-2008/en/world/ 

54 Food and Agriculture Organization of the United Nations – FAO. (2002). Fertilizer use by crop (FAO Fertilizer and Plant Nutrition Bulletin; no. 16). Rome: FAO. 

55 Harmunt, K., & Stephan-Beckmann, S. (1997). Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). II. Tuber and whole plant. Potato Research40(1), 135-153. 

56 Echalier, C., Valot, L., Martinez, J., Mehdi, A., & Subra, G. (2019). Chemical cross-linking methods for cell encapsulation in hydrogels. Materials Today Communications, 100536. http://dx.doi.org/10.1016/j.mtcomm.2019.05.012

5e8e18870e8825fe7a1ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections