Synthesis, characterization and thermokinetic analysis of the novel sugar based styrene co-polymer
Fatma Cetin Telli
Abstract
Keywords
References
1 Pearson, S., Chen, G., & Stenzel, M. H. (2011) Synthesis of Glycopolymers. In R. Narain (Ed.),
2 Louwrier, A. (1998). Industrial products: the return to carbohydrate - Based industries.
3 Singh, R., Bhattacharya, B., Rhee, H. W., & Singh, P. K. (2015). Solid gellan gum polymer electrolyte for energy application.
4 Methven, J. M. (1991). Polymeric materials from renewable resources.
5 Borges, M.R., Dos Sandos, J.A., Vieira, M., & Balaban R. (2009). Polymerization of a water soluble glucose vinyl ester monomer with tensoactive properties synthesized by enzymatic catalyst.
6 Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review.
7 Bertini, V., Pocci, M., Alfei, S., Idini, B., & Lucchesini, F. (2007). Synthesis of crosslinked nanostructured saccharidic vinyl copolymers and their functionalization.
8 Sanchez-Chaves, M., Ruiz, C., Cerrada, M. L., & Fernandez-Garcia, M. (2008). Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene-vinyl alcohol copolymers.
9 Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system.
10 Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., & Guo, Z. (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors.
11 Wang, W., Hao, X., Chen, S., Yang, Z., Wang, C., Yan, R., Zhang, X., Liuc, H., Shaod, Q., & Guo, Z. (2018) pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications.
12 Kashfipour, M. A., Mehra, N., Dent, R. S., & Zhu, J. (2020). Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids.
13 Lichtenthaler, F. W., & Peters, S. C. R. (2004). Carbohydrates as green raw materials for the chemical industry.
14 Sampath, C. A., & Edward, T. (2007). Glycosylated polyacrylate nanoparticles by emulsion polymerization.
15 Stanek, L. G., Heilmann, S. M., & Gleason, W. B. (2006). Preparation and copolymerization of a novel carbohydrate containing monomer.
16 Vert, M. (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future.
17 Varma, A. J., Kennedy, J. F., & Galgali, P. (2004). Synthetic polymers functionalized by carbohydrates.
18 Ma, Z., & Zhu, X. X. (2019). Copolymers containing carbohydrates and other biomolecules: Design, synthesis and applications.
19 Roy, R., Tropper, F. D., & Romanowska, A. (1992). New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamideco-p-acrylamido-phenyl beta lactoside).
20 Okada, M. (1992). Molecular design and syntheses of glycopolymers.
21 Haddleton, D. M., Edmonds, R., Heming, A. M., Kelly, E. J., & Kukulj, D. (1999). Atom transfer polymerisation with glucose and cholesterol derived initiators.
22 Ohno, K., Tsujii, Y., & Fukuda, T. (1998). Synthesis of a well-defined glycopolymer by atom transfer radical polymerization.
23 Ting, S. R. S., Granville, A. M., Quémener, D., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). RAFT Chemistry and Huisgen 1,3-dipolar cycloaddition:a route to block copolymers of vinyl acetate and 6-
24 Ladmiral, V., Melia, E., & Haddleton, D. M. (2004). Synthetic glycopolymers: An overview.
25 Roy, R. (1996). Blue-prints, synthesis and applications of glycopolymers.
26 Deppe, O., Glümer, A., Yu, S., & Buchholz, K. (2004). Synthesis and co-polymerization of an unsaturated 1,5-anhydro-D-fructose derivative.
27 Ştefan, L. N., Pana, A. M., Pascariu, M. C., Şişu, E., Bandur, G., & Rusnac, L. M. (2011). Synthesis and characterization of a new methacrylic glycomonomer.
28 Fatma, Ç. T. (2015). Syntheses and characterization of new 3-O-Allyl ether chloralose derivatives.
29 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars.
30 Klein, J., Herzog, D., & Hajibegli, A. (1985). Poly vinylsaccharides. Synthesis and characterization of polyvinylsaccarides of the urea type.
31 Klein, J., & Blumenberg, K. (1986). Poly(vinyl saccharide)s, 3†. Synthesis and cationic polymerization of 6‐
32 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface characterizations of copolymer films with pendant monosaccharides.
33 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface studies on copolymers having pendant monosaccharides.
34 Wulff, G., & Clarkson, G. (1994). On the synthesis of
35 Wulff, G., & Clarkson, G. (1994). New type of polyvinylsaccharides with N,N-dimethyl barbituric acid as a linker between sugar and styrene residue.
36 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars.
37 Wulff, G., Schmid, J., & Venhoff, T. (1996). The preparation of new types of polymerizable vinyl sugars with CC bonds between sugar and double bond.
38 Wulff, G., Zhu, L., & Schmidt, H. (1997). Investigations on surface-modified bulk polymers. 1.Copolymers of styrene with a styrene moiety containing a sugar monomer.
39 Heffter, A. (1889). Ueber die Einwirkung von Chloral auf Glucose.
40 Hanriot, M., & Richet, C. (1983). D’une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques.
41 Hanriot, M. (1909). D'une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques.
42 Forsen, S., Lindberg, B., Silvander, B. G., Nilsson, B., Selin, K., & Westerdahl, A. (1965). Trichloroethylidene derivatives of D-glucose.
43 Yenil, N., Ay, E., Ay, K., Oskay, M., & Maddaluno, J. (2010). Synthesis and antimicrobialactivities of two novel amino sugars derived from chloraloses.
44 Salman, Y. G., Makinabakan, O., & Yuceer, L. (1994). Tricyclic orthoester formation from trichloroethylidene acetals of sugars via ketene acetals.
45 Cetin, F., Yenil, N., & Yuceer, L. (2004). Stable spiro-endoperoxides by sunlight-mediated photooxygenation of 1,2-
46 Telli, F. C., & Yuceer, L. (2012). Synthesis of new spirodifuranose derivatives by reduction of stable spiro-endoperoxides.
47 Telli, F. C., Ay, K., Murat, G., Kok, G., & Salman, Y. (2013). Acid promoted intramolecular formation of 3,5-anhydro-1,4-furano-7-ulose derivatives via the Wittig-cyclization procedure and their antimicrobial properties.
48 Denizaltı, S., Telli, F. C., Yıldıran, S., Salman, A. Y., & Çetinkaya, B. (2016). The newly synthesized furanoside-based NHC ligands for the arylation of aldehydes.
49 Alkan, S., Telli, F. C., Salman, Y., & Astley, S. T. (2015). Synthesis of novel schiff base ligands from Gluco- and Galactochloraloses for the Cu(II) catalysed asymmetric henry reaction.
50 Telli, F. C., Demir, B., Barlas, F. B., Guler, E., Timur, S., & Salman, Y. (2016). Novel Glyconanoconjugates: Synthesis.
51 Xie, P., Li, Y., Hou, Q., Sui, K., Liu, C., Fu, X., Zhang, J., Murugadoss, V., Fan, J., Wang, Y., Fan, R., & Guo, Z. (2020). Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy.
52 Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou,Q., An, L., Dong, M., Fan, R., & Guo, Z. (2019). Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites.
53 Sun, K., Wang, L., Wang, Z., Wu, X., Fan, G., Wang, Z., Cheng, C., Fan, R., Dong, M., & Guo, Z. (2019). Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior.
54 Lee, S., Jin, B.S., & Lee, J.W. (2006) Thermal degradation kinetics of antimicrobial agent, Poly(hexamethylene guanidine) phosphate.
55 Wang, D., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U., & Heinrich, G. (2011). Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide.
56 Wang, H., Yang, J., Long, S., Wang, X., Yang, Z., & Li, G. (2004). The thermal degradation of poly(phenylene sulfide sulfone).
57 Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data.
58 Flynn, J. H., & Wall, L. A. (1966). A quick direct method for the determination of activation energy from thermogravimetric data.
59 Ozawa, T. (1965). A new method of analyzing thermogravimetric data.
60 Mereyala, H. B., Goud, P. M., Gadikota, R. R., & Reddy, K. R. (2000). Transformation of terminal diols of cyclic and acyclic saccharides to epoxides and alkenes by reaction with triphenylphosphine, imidazole and iodine.
61 Pigłowska, M., Kurc, B., Rymaniak, L., Lijewski, P., & Fu’c, P. (2020). Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O Content on the Surface byTG/DTG-DTA.
62 Yildirim, Y., Dogan, B. S., Muglali, S., Saltan, F., Ozkan, M., & Akat, H. (2012). Synthesis, characterization, and thermal degradation kinetic of Polystyrene-g-Polycaprolactone.
63 Funt, J. M., & Maghill, J. H. (1974). Thermal decomposition of polystyrene: Eflect of molecular weight.
64 Saltan, F., & Akat, H. (2013). Synthesis and thermal degradation kinetics of D-(+)- GALACTOSE CONTAINING POLYMERS.
65 Pană, A. M., Ordodi, V., Rusu, G., Gherman, V., Bandur, G., Rusnac, L. M., & Dumitrel, G. A. (2020). Biodegradation pattern of glycopolymer based on D-Mannose oligomer and Hydroxypropyl Acrylate.