Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Crosslinking starch/oat hull mixtures for use in composites with PLA

Peixoto, Thamires da Silva; Yamashita, Fabio; Bilck, Ana Paula; Carvalho, Gizilene Maria; Grossmann, Maria Victoria Eiras

Downloads: 0
Views: 42


Modification of composite components has been proposed as a tool to improve their functional properties. The present work studied crosslinking of a starch/oat hull mixture by reactive extrusion with sodium trimetaphosphate (STMP), for application in composites with polylactic acid (PLA). The treated mixture was characterized regarding degree of substitution, FT-IR, and thermal properties. The native and modified mixtures were processed by injection molding, together with PLA and glycerol. The microstructure, mechanical properties, shrinkage, density, and thermal properties of the composites were determined. The FT-IR results, increase in phosphorus content and thermal stability after starch/fiber mixture treatment with STMP suggested the occurrence of crosslinking. Better interfacial adhesion between oat hulls and the polymeric matrix was observed in electron micrographs of the composites containing the modified components. Slight decreases in tensile strength and modulus were observed in the modified composites, suggesting that extrusion and subsequent milling may have broken some structures/linkages.


biocomposites; reactive extrusion; lignocellulosic fibers; injection molding; reticulation.


1 Ren, J., Fu, H., Ren, H., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers77(3), 576-582. http://dx.doi.org/10.1016/j.carbpol.2009.01.024

2 Bras, J., Mendez, J. A., Krouit, M., Lopez, J. P., Pelach, M. A., & Belgacem, N. (2010). Process and recyclability analyses of innovative bio-composite for tray. Packaging Technology & Science23(4), 177-188. http://dx.doi.org/10.1002/pts.888

3 Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers92(1), 19-22. http://dx.doi.org/10.1016/j.carbpol.2012.09.038. PMid:23218260. 

4 Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials (Basel)10(8), 1-22. http://dx.doi.org/10.3390/ma10080952. PMid:28809808. 

5 Pereira, P. H. F., Rosa, M. F., Cioffi, M. O. H., Benini, K. C. C. C., Milanese, A. C., Voorwald, H. C. J., & Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Polímeros: Ciência e Tecnologia25(1), 9-22. http://dx.doi.org/10.1590/0104-1428.1722

6 Karimi, S., Dufresne, A., Tahir, P. M., Karimi, A., & Abdulkhani, A. (2014). Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties. Journal of Materials Science49(13), 4513-4521. http://dx.doi.org/10.1007/s10853-014-8151-1

7 Reddy, N., & Yang, Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology23(1), 22-27. http://dx.doi.org/10.1016/j.tibtech.2004.11.002. PMid:15629854. 

8 Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate Polymers102, 576-583. http://dx.doi.org/10.1016/j.carbpol.2013.11.020. PMid:24507321. 

9 Corradini, E., Agnelli, J. A. M., Morais, L. C., & Mattoso, L. H. C. (2008). Study of properties of biodegradable composites of starch/gluten/glycerol reinforced with sisal fibers. Polímeros: Ciência e Tecnologia18(4), 353-358. http://dx.doi.org/10.1590/S0104-14282008000400016

10 Elbadry, E. A., Aly-Hassan, M. S., & Hamada, H. (2012). Mechanical properties of natural jute fabric/jute mat fiber reinforced polymer matrix hybrid composites. Advances in Mechanical Engineering20, 1-12. http://dx.doi.org/10.1155/2012/354547

11 Wang, P., Chen, F., Zhang, H., Meng, W., Sun, Y., & Liu, C. (2017). Large‐scale preparation of jute‐fiber‐reinforced starch‐based composites with high mechanical strength and optimized biodegradability. Starch69(11-12), 1700052. http://dx.doi.org/10.1002/star.201700052

12 Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fiber, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Industrial Crops and Products32(3), 353-359. http://dx.doi.org/10.1016/j.indcrop.2010.05.014

13 Reddy, J. P., Misra, M., & Mohanty, M. (2013). Injection moulded biocomposites from oat hull and polypropylene/polylactide blend: fabrication and performance evaluation. Advances in Mechanical Engineering5, 761840. http://dx.doi.org/10.1155/2013/761840

14 Zanela, J., Bilck, A. P., Casagrande, M., Grossmann, M. V. E., & Yamashita, F. (2018). Oat fiber as reinforcement for starch / polyvinyl alcohol materials produced by injection molding. Stärke70(7-8), 1-11. http://dx.doi.org/10.1002/star.201700248

15 Debiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Effects of vegetal fibers on properties of cassava starch biodegradable composites produced by extrusion. Ciência e Agrotecnologia34(6), 1522-1529. http://dx.doi.org/10.1590/S1413-70542010000600024

16 Müller, G., Hanecker, E., Blasius, K., Seidemann, C., Tempel, L., Sadocco, P., Pozo, B. F., Boulougouris, G., Lozo, B., Jamnicki, S., & Bobu, E. (2014). End-of-life solutions for fibre and bio-based packaging materials in Europe. Packaging Technology & Science27(1), 1-15. http://dx.doi.org/10.1002/pts.2006

17 Wang, G., Thompson, M. R., & Liu, Q. (2012). Controlling the moisture absorption capacity in a fiber-reinforced thermoplastic starch using sodium trimetaphosphate. Industrial Crops and Products36(1), 299-303. http://dx.doi.org/10.1016/j.indcrop.2011.10.015

18 Müller, P., Renner, K., Móczó, J., Fekete, E., & Pukánszky, B. (2014). Thermoplastic starch/wood composites: interfacial interactions and functional properties. Carbohydrate Polymers102(2), 821-829. http://dx.doi.org/10.1016/j.carbpol.2013.10.083. PMid:24507352. 

19 Rosa, M. F., Chiou, B., Medeiros, E. S., Wood, D. F., Mattoso, L. H. C., Orts, W. J., & Imam, S. H. (2009). Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibers. Journal of Applied Polymer Science111(2), 612-618. 

20 Sinha, E., & Rout, S. K. (2009). Influence of fiber surface treatment on structural, thermal and mechanical properties of jute fiber and its composite. Bulletin of Materials Science32(1), 65-76. http://dx.doi.org/10.1007/s12034-009-0010-3

21 Rebelo, B., Silva, Y., Ferreira, S., Toledo Filho, R., & Giacon, V. (2019). Effects of mercerization in the chemical and morphological properties of amazon piassava. Polímeros29(1), e2019013. http://dx.doi.org/10.1590/0104-1428.01717

22 Campos, A., Teodoro, K. B. R., Marconcini, J. M., Matosso, L. H. C., & Martins-Franchetti, S. M. M. (2011). Effect of fiber treatments on properties of thermoplastic starch/polycaprolactone/sisal biocomposites. Polimeros: Ciência e Tecnologia21(3), 217-222. http://dx.doi.org/10.1590/S0104-14282011005000039

23 Cardoso, M. A. P., Carvalho, G. M., Yamashita, F., Mali, S., Eiras, D., Demiate, I. M., & Grossmann, M. V. E. (2016). Oat hull fibers bleached by reactive extrusion with alkaline hydrogen peroxide in thermoplastic starch/poly(butylene adipate-co-terephthalate) composites. Polymer Composites6, 1-18. 

24 Cardoso, M. A. P., Carvalho, G. M., Yamashita, F., Mali, S., Olivato, J. B., & Grossmann, M. V. E. (2016). Oat fibers modification by reactive extrusion with alkaline hydrogen peroxide. Polímeros: Ciência e Tecnologia26(4), 320-326. http://dx.doi.org/10.1590/0104-1428.2316

25 Das, K., Ray, D., Bandyopadhyay, N. R., Gupta, A., Sengupta, S., Sahoo, S., Mohanty, A., & Misra, M. (2010). Preparation and characterization of cross-linked starch/poly (vinyl alcohol) green films with low moisture absorption. Industrial & Engineering Chemistry Research49(5), 2176-2185. http://dx.doi.org/10.1021/ie901092n

26 Kaewtatip, K., & Thongmee, J. (2013). The effects of cross-linked starch on the properties of thermoplastic starch. Materials & Design45(3), 586-589. http://dx.doi.org/10.1016/j.matdes.2012.09.039

27 Derduangchan, N., Sridach, W., & Wittaya, T. (2014). Enhancement of the properties of biodegradable rice starch films by using chemical crosslinking agents. International Food Research Journal21(3), 1225-1235. 

28 Yoon, S. D. (2014). Cross-linked potato starch-based blend films using ascorbic acid as a plasticizer. Journal of Agricultural and Food Chemistry62(8), 1755-1764. http://dx.doi.org/10.1021/jf4024855. PMid:23909738. 

29 Duanmu, J., Kristofer, E., Gamstedt, E. K., Pranovich, A., & Rosling, A. (2010). Studies on mechanical properties of wood fiber reinforced cross-linked starch composites made from enzymatically degraded allylglycidyl ether-modified starch. Composites. Part A, Applied Science and Manufacturing41(10), 1409-1418. http://dx.doi.org/10.1016/j.compositesa.2010.05.018

30 Zhang, C., Li, F., Li, J., Wang, L., Xie, Q., Xu, J., & Chen, S. (2017). A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials & Design120, 222-229. http://dx.doi.org/10.1016/j.matdes.2017.02.027

31 Kumar, A. P., & Singh, R. P. (2008). Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresource Technology99(18), 8803-8809. http://dx.doi.org/10.1016/j.biortech.2008.04.045. PMid:18504125. 

32 Niu, Y., Zhang, X., He, X., Zhao, J., Zhang, W., & Lu, C. (2015). Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. International Journal of Biological Macromolecules72, 855-861. http://dx.doi.org/10.1016/j.ijbiomac.2014.09.042. PMid:25301699. 

33 Wurzburg, O. B. (1986). Cross-linked starches. In O. B. Wurzburg (Ed.), Modified starches: properties and uses (pp. 41-53). Boca Raton: CRC Press. 

34 Sechi, N. S. M., & Marques, P. T. (2017). Preparation and physicochemical, structural and morphological characterization of phosphorylated starch. Materials Research20(2, Suppl. suppl 2), 174-180. http://dx.doi.org/10.1590/1980-5373-mr-2016-1008

35 Walinga, I., Van Der Lee, J. J., Houba, V. J. G., Van Vark, W., & Novozamski, I. (1995). Plant analysis manual. Berlin: Springer Science & Business Media. http://dx.doi.org/10.1007/978-94-011-0203-2

36 American Society for Testing and Materials – ASTM. (2000). D 955-00: standard test method of measuring shrinkage from mold dimensions of thermoplastics. In ASTM. Annual book of ASTM standards. New York: ASTM. 

37 American Society for Testing and Materials – ASTM. (2003). D-638-03: standard test method for tensile properties of plastics. In ASTM. Annual book of ASTM standards. Philadelphia: ASTM. 

38 Nabeshima, E., & Grossmann, M. V. E. (2001). Functional properties of pregelatinized and crosslinked cassava starch obtained by extrusion with trimetaphosphate. Carbohydrate Polymers45(4), 347-353. http://dx.doi.org/10.1016/S0144-8617(00)00273-3

39 Rutenberg, M. W., & Solarek, D. (1984). Starch derivatives: Production and uses. In R. L. Whistler, J. N. Bemiller, & E. F. Paschall (Eds.), Starch: chemistry and technology (pp. 312-388). London:Academic Press. http://dx.doi.org/10.1016/B978-0-12-746270-7.50016-1

40 Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to Spectroscopy. (4th ed.). Belmont: Brookes/Cole. 

41 Shalviri, A., Liu, Q., Abdekhodaie, M. J., & Wu, X. Y. (2010). Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydrate Polymers79(4), 898-907. http://dx.doi.org/10.1016/j.carbpol.2009.10.016

42 Rahimi, M., Esfahanian, M., & Moradi, M. (2014). Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding. Journal of Materials Processing Technology11(11), 2359-2365. http://dx.doi.org/10.1016/j.jmatprotec.2014.04.028

43 Jachowicz, T., Gajdoš, I., & Krasinskyi, V. (2014). Research on the content and filler type on injection shrinkage. Advances in Science and Technology Research Journal8(23), 6-13. 

44 Ayoub, A., & Rizvi, S. S. H. (2008). Properties of supercritical fluid extrusion based crosslinked starch extrudates. Journal of Applied Polymer Science107(6), 3663-3671. http://dx.doi.org/10.1002/app.27538.

45 Zhang, L., Sun, Z., Liang, D., Lin, J., & Xiao, W. (2017). Preparation and performance evaluation of PLA/coir fibre biocomposites. BioResources12(4), 7349-7362. Retrieved in 2019 July 26, from https://bioresources.cnr.ncsu.edu/resources/preparation-and-performance-evaluation-of-placoir-fibre-biocomposites 

5e8e1c790e8825670a1ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections