Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.02518
Polímeros: Ciência e Tecnologia
Original Article

Compatibility and characterization of Bio-PE/PCL blends

Bezerra, Elieber Barros; França, Danyelle Campos de; Morais, Dayanne Diniz de Souza; Silva, Ingridy Dayane dos Santo; Siqueira, Danilo Diniz; Araújo, Edcleide Maria; Wellen, Renate Maria Ramos

Downloads: 0
Views: 43

Abstract

In this work, blends based on environmentally friend polymers such as Biopolyethylene (Bio-PE), Polycaprolactone (PCL) and Polyethylene graft maleic anhydride (PEgMA) added as compatibilizer agent were produced by conventional extrusion, aiming to produce bio-blends with synergic properties at low processing cost, being at same time non-polluting and therefore contributing to the environment preservation. Differential scanning calorimetry (DSC) showed that blending does not significantly interfere on the melting and crystallization behaviors of neat polymers, suggesting being low miscibility compounds. Mechanical properties were observed changing with blend composition as the impact strength significantly increased reaching values higher than 130% when compared to neat Bio-PE. Scanning electron microscopy (SEM) images showed honeycomb morphology in Bio-PE/PCL blends, and the addition of PEgMA decreased the coalescence contributing to obtain more stable and synergic compounds. Bio-PE/PCL/PEgMA at 80/20/10 contents presented the best properties and may be used for packaging materials (food containers, film wrapping), and hygiene products.

Keywords

Bio-PE; PCL; thermal behavior; mechanical properties; morphology.

References

1 Hemais, C. A., Rosa, E. O. R., & Barros, H. M. (2000). Observações sobre o desenvolvimento tecnológico e os ciclos da indústria de polímeros no Brasil. Polímeros: Ciência e Tecnologia10(3), 149-154. http://dx.doi.org/10.1590/S0104-14282000000300011

2 Rosa, D. S., Franco, B. L. M., & Calil, M. R. (2001). Biodegradabilidade e propriedades mecânicas de novas misturas poliméricas. Polímeros: Ciência e Tecnologia11(2), 82-88. http://dx.doi.org/10.1590/S0104-14282001000200010

3 Rosa, D. S., Chui, Q. S. H., Pantano, R., Fo., & Agnelli, J. A. M. (2002). Avaliação da biodegradação de Poli-β-(Hidroxibutirato), Poli-β-(Hidroxibutirato-co-valerato) e Poli-ε-(caprolactona) em solo compostado. Polímeros: Ciência e Tecnologia12(4), 311-317. http://dx.doi.org/10.1590/S0104-14282002000400015

4 Le Guern, C. (2018). When the mermaids cry: the great plastic tide. Natural Care. Retrieved in 2018, October 20, from http://plastic-pollution.org 

5 Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in Materials Science50(8), 962-1079. http://dx.doi.org/10.1016/j.pmatsci.2005.05.002

6 Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2012). Tenacificação do Poli(Ácido Lático) pela adição do terpolímero (Etileno/Acrilato de Metila/Metacrilato de Glicidila). Polímeros: Ciência e Tecnologia22(2), 164-169. http://dx.doi.org/10.1590/S0104-14282012005000025.

7 Bastioli, C. (2005). Handbook of biodegradable polymers. Shrewsbury: Rapra Technology. [

8 Associação Brasileira de Normas Técnicas. (2008). NBR 15448-1: embalagens plásticas degradáveis e/ou de fontes renováveis - parte 1: Terminologia. Rio de Janeiro: ABNT. 

9 Brito, G. F., Agrawal, P., Araújo, E. M., & Mélo, T. J. A. (2012). Polylactide/Biopolyethylene bioblends. Polímeros: Ciência e Tecnologia22(5), 427-429. http://dx.doi.org/10.1590/S0104-14282012005000072

10 Braskem Produtos Verdes. Retrieved in 2018, March 19, from http://www.braskem.com/site.aspx/FAQ_PeVerde 

11 Swift, G. (1998). Requirements for biodegradable water-soluble polymers. Polymer Degradation & Stability59(1-3), 19-24. http://dx.doi.org/10.1016/S0141-3910(97)00162-6

12 Braunegg, G., Lefebvre, G., & Genser, K. F. (1998). Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. Journal of Biotechnology65(2-3), 27-61. http://dx.doi.org/10.1016/S0168-1656(98)00126-6. PMid:9828458. [

13 Zuchowska, O., Hlavata, D., Steller, R., Adamiak, W., & Meissner, W. (1999). Physical structure of polyolefin-starch blends after ageing. Polymer Degradation & Stability64(2), 339-346. http://dx.doi.org/10.1016/S0141-3910(98)00212-2

14 Pelicano, M., Pachekoski, W., & Agnelli, J. A. M. (2009). Influência da adição de amido de mandioca na biodegradação da blenda polimérica PHBV/Ecoflex. Polímeros: Ciência e Tecnologia19(3), 212-217. http://dx.doi.org/10.1590/S0104-14282009000300009

15 American Society For Testing and Materials. (2017). ASTM D883: terminology relating to plastics. West Conshohocken: Philadelphia. 

16 Amini, M., Mobli, M., Khalili, M., & Ebadi-Dehaghani, H. (2018). Assessment of compatibility in Polypropylene/Poly(lactic acid)/Ethylene vinyl alcohol ternary blends: relating experiments and molecular dynamics simulation results. Journal of Macromolecular Science, Part B: Physics57(4), 1-18. http://dx.doi.org/10.1080/00222348.2018.1460153

17 Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design68, 177-185. http://dx.doi.org/10.1016/j.matdes.2014.12.027

18 Utracki, L. A. (2002). Polymer blends handbook (Vol. 1). Netherlands: Kluwer Academic Publishers. 

19 Matta, A. K., Rao, R. U., Suman, K. N. S., & Rambabu, V. (2014). Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Materials Science6, 1266-1270. http://dx.doi.org/10.1016/j.mspro.2014.07.201

20 Fel, E., Khrouz, L., Massardier, V., Cassagnau, P., & Bonneviot, L. (2016). Comparative study of gamma-irradiated PP and PE polyolefins part 2: Properties of PP/PE blends obtained by reactive processing with radicals obtained by high shear or gamma-irradiation. Polymer82, 217-227. http://dx.doi.org/10.1016/j.polymer.2015.10.070

21 Antunes, M. C. M., & Felisberti, M. I. (2005). Blends of Poly(hydroxybutyrate) and Poly (ε-caprolactone) Obtained from Melting Mixture. Polímeros: Ciência e Tecnologia15(2), 134-138. http://dx.doi.org/10.1590/S0104-14282005000200014

22 Faker, M., Razavi Aghjeh, M. K., Ghaffari, M., & Seyyedi, S. A. (2008). Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends. European Polymer Journal44(6), 1834-1842. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.002

23 Greco, R., Mancarella, C., Martuscelli, E., Ragosta, G., & Yin, J. (1987). Polyolefin blends: 1. Effect of EPR composition on structure, morphology and mechanical properties of HDPE/EPR alloys. Polymer28(11), 1922-1928. http://dx.doi.org/10.1016/0032-3861(87)90301-6

24 Bezerra, E. B., França, D. C., Morais, D. D. S., Ferreira, E. S. B., Araújo, E. M., & Wellen, R. M. R. (2017). Comportamento reológico do Bio-PE e do PCL na presença do PEgAA e PEgMA. Revista Matéria22(1), 1-12. http://dx.doi.org/10.1590/s1517-707620170001.0130

25 Morais, D. D. S. (2016). Desenvolvimento de blendas de Poliestireno/Poli(ɛ-caprolactona) (Tese de doutorado). Universidade Federal de Campina Grande, Campina Grande. 

26 Ferreira, L. A. S., Pessan, L. A., & Hage, E., Jr. (1997). Comportamento mecânico e termo-mecânico de blendas poliméricas PBT/ABS. Polímeros: Ciência e Tecnologia7(1), 67-72. http://dx.doi.org/10.1590/S0104-14281997000100011

27 Luna, C. B. B., Silva, D. F., & Araújo, E. M. (2014). Estudo do comportamento de blendas de poliamida 6/resíduo de borracha da indústria de calçados. Revista Univap20(36), 98-110. http://dx.doi.org/10.18066/revunivap.v20i36.249

28 Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design68, 177-185. http://dx.doi.org/10.1016/j.matdes.2014.12.027

29 Escocio, V. A., Visconte, L. L. Y., Cavalcante, A. P., Furatado, A. M. S., & Pacheco, E. B. A. V. (2015) Study of mechanical and morphological properties of biobased polyethylene (HDPE) and sponge-gourds (Luffa-Cylindrica) agroresidue composites. In Proceedings of the AIP Conference Proceedings 1664 (p. 1-5). USA: AIP Publishing LLC. https://doi.org/10.1063/1.4918430

30 Machado, A. V., Moura, I., Duarte, F. M., Botelho, G., Nogueira, R., & Brito, A. G. (2007). Evaluation of properties and biodeterioration potential of polyethylene and aliphatic polyester blends. International Polymer Processing22(5), 512-518. http://dx.doi.org/10.3139/217.2061

31 Rosa, D. C., Guedes, C. G. F., & Bardi, M. A. G. (2007). Evaluation of thermal, mechanical and morphological properties of PCL/CA and PCL/CA/PE-g-GMA blends. Polymer Testing26(2), 209-215. http://dx.doi.org/10.1016/j.polymertesting.2006.10.003

32 Moura, I., Machado, A. V., Duarte, F. M., Botelho, G., & Nogueira, R. (2008). Preparation of biodegradable materials by reactive extrusion. Materials Science Forum, 587-588, 520-524. http://dx.doi.org/10.4028/www.scientific.net/MSF.587-588.520

33 Silva, T. R. G. (2014). Influência da poli (ε-caprolactona) e de copolímeros funcionalizados no desempenho de blendas com matriz de poli (Ácido-Lático) [Tese de doutorado). Universidade Federal de Campina Grande, Campina Grande. 

34 Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2007). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science103(2), 1066-1074. http://dx.doi.org/10.1002/app.25311.

35 Takasu, A., Oishi, Y., Lio, Y., Inai, Y., & Hirabayashi, T. (2003). Synthesis of aliphatic polyesters by direct polyesterification of dicarboxylic acids with diols under mild conditions catalyzed by reusable rare-earth triflate. Macromolecules36(6), 1772-1774. http://dx.doi.org/10.1021/ma021462v

36 Chevallier, C., Becquart, F., Majeste, J.-C., & Taha, M. (2013). Solvent-free preparation, characterization, and properties of SEBS–g–polycarbonate copolymers. Designed Monomers and Polymers6(16), 564-577. http://dx.doi.org/10.1080/15685551.2013.771309

37 Araújo, J. P., Agrawal, P. A., & Mélo, T. J. A. (2015). Blendas PLA/PEgAA: avaliação da reatividade entre os polímeros e da concentração de PEgAA nas propriedades e na morfologia. Revista Eletrônica de Materiais e Processos, 10(3), 118-127. Retrieved in 2018, March 15, from http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/475

38 Deblieck, R. A. C., Van Beek, D. J. M., Remerie, K., & Ward, I. M. (2011). Failure mechanisms in polyolefines: the role of crazing, shear yielding and the entanglement network. Polymer52(14), 2979-2990. http://dx.doi.org/10.1016/j.polymer.2011.03.055

39 Botlhoko, O. J., Ramontja, J., & Ray, S. S. (2018). A new insight into morphological, thermal, and mechanical properties of melt-processed polylactide/poly(ε-caprolactone) blends. Polymer Degradation & Stability154, 84-95. http://dx.doi.org/10.1016/j.polymdegradstab.2018.05.025

40 França, D. C., Morais, D. D., Bezerra, E. B., Araújo, E. M., & Wellen, R. M. R. (2018). Photodegradation mechanisms on poly(ε-caprolactone) (PCL). Materials Research21(5), 1-8. http://dx.doi.org/10.1590/1980-5373-mr-2017-0837

41 Guimarães, M. J. O. C., Rocha, M. C. G., & Coutinho, F. M. B. (2002). Polietileno de alta densidade tenacificado com elastômero metalocênico: 1. Propriedades mecânicas e características morfológicas. Polímeros: Ciência e Tecnologia12(2), 76-84. http://dx.doi.org/10.1590/S0104-14282002000200006

42 Roeder, J., Oliveira, R. V. B., Gonçalves, M. C., Soldi, V., & Pires, A. T. N. (2002). Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polymer Testing21(7), 815-821. http://dx.doi.org/10.1016/S0142-9418(02)00016-8

43 Bucknall, C. B., & Paul, D. R. (2009). Notched impact behavior of polymer blends: Part 1: new model for particle size dependence. Polymer50(23), 5539-5548. http://dx.doi.org/10.1016/j.polymer.2009.09.059

44 Liu, H., Song, W., Chen, F., Guo, L., & Zhang, J. (2011). Interaction of microstructure and interfacial adhesion on Impact Performance of Polylactide (PLA) ternary blends. Macromolecules44(6), 1513-1522. http://dx.doi.org/10.1021/ma1026934.

45 Plochocki, A. P., Dagli, S. S., & Andrews, R. D. (1990). The interface in binary mixtures of polymers containing a corresponding block copolymer: Effects of industrial mixing processes and of coalescence. Polymer Engineering and Science30(12), 741-752. http://dx.doi.org/10.1002/pen.760301207.

46 Pracella, M. (2016). Modification of polymer properties. Oxford: Elsevier Science. 

47 Sánchez, A., Rosales, C., Laredo, E., Müller, A. J., & Pracella, M. (2001). Compatibility studies in binary blends of PA6 and ULDPE-graft-DEM. Macromolecular Chemistry and Physics202(11), 2461-2478. http://dx.doi.org/10.1002/1521-3935(20010701)202:11<2461::AID-MACP2461>3.0.CO;2-1.

48 Barcellos, I. O. (1998). Estudo de blendas poliméricas e hidrogéis com aplicações na área biomédica [Tese de doutorado). Universidade Federal de Santa Catarina, Florianópolis.

49 Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science453(1), 292-301. http://dx.doi.org/10.1016/j.memsci.2013.10.070

50 Rahimi, M., Zinadini, S., Zinatizadeh, A. A., Vatanpour, V., Rajabi, L., Rahimi, Z. (2016). Hydrophilic goethite nanoparticle as a novel antifouling agent in fabrication of nanocomposite polyethersulfone membrane. Journal of Applied Polymer Science, 133(26), 1-13. http://dx.doi.org/10.1002/app.43592

5e8d17ec0e88254e09c9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections