Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.02418
Polímeros: Ciência e Tecnologia
Original Article

Castor polyurethane used as osteosynthesis plates: microstructural and thermal analysis

Moura Neto, Francisco Norberto de; Fialho, Ana Cristina Vasconcelos; Moura, Walter Leal de; Rosa, Adriana Gadelha Ferreira; Matos, José Milton Elias de; Reis, Fernando da Silva; Mendes, Milton Thélio de Albuquerque; Sales, Elton Santos Dias

Downloads: 0
Views: 151

Abstract

Bone fractures to be corrected need stabilization of their extremities, which is achieved with the use of plates and screws. This research aimed to produce castor bean polyurethane (Ricinus communis), to make resorbable plate, structural and thermal analysis. The production was made by the glycerolysis of the triglycerides present in the oil, after addition of polyol/glycerol and hexamethylene diisocyanate (HDI) to form urethane structures, with and without addition of hydroxyapatite. The characterization was by FTIR spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry and thermogravimetry. Plates with dimensions of 40 mm X 10 mm X 2 mm were obtained. The SEM showed flat and homogeneous surface. DRX analysis showed the semi-crystallinity of the biomaterial. Glass transition and thermal stability up to 50 °C were observed, followed by thermal decomposition up to 450 °C. The produced polyurethane showed it is possible to be applied in the manufacture of plate.

Keywords

maxillofacial surgery; fracture fixation; bone fractures; biocompatible materials; castor oil.

References

1 Morita, A. T., Toma, M. S., & de Paoli, M.-A. (2005). Módulo de reometria capilar e auto-reforçamento de baixo custo. Polímeros: Ciência e Tecnologia15(1), 68-72. http://dx.doi.org/10.1590/S0104-14282005000100015

2 Kang, I. G., Jung, J. H., Kim, S. T., Choi, J. Y., & Sykes, J. M. (2014). Comparison of Tiatium and Biodegradable Plates for Treating Midfacial Fractures. Journal of Oral and Maxillofacial Surgery72(4), 762.e1-762.e4. http://dx.doi.org/10.1016/j.joms.2013.12.020

3 Milori, F. P., Quitzan, J., Souza, R. S., Cirio, S. M., Dornbusch, P. T., & Prado, A. M. R. B. (2013). Placas ósseas confeccionadas a partir de diáfise cortical equina na osteossíntese femoral em coelho. Pesquisa Veterinária Brasileira33(10), 1201-1207. http://dx.doi.org/10.1590/S0100-736X2013001000005

4 Park, Y. W. (2015). Bioabsorbable osteofixation for orthognathic surgery. Maxillofacial Plastic and Reconstructive Surgery37(1), 6. https://doi.org/10.1186/s40902-015-0003-7. PMid:25722967. 

5 Erbetta, C. D. C., Viegas, C. C. B., Freitas, R. F. S., & Sousa, R. G. (2011). Síntese e caracterização térmica e química do copolímero poli(D,L-lactídeo-co-glicolídeo). Polímeros: Ciência e Tecnologia21(5), 376-382. http://dx.doi.org/10.1590/S0104-14282011005000063

6 Nacer, R. S., Silva, B. A. K., Poppi, R. R., Silva, D. K. M., Cardoso, V. S., Delben, J. R. J., & Delben, A. A. S. T. (2015). Biocompatibility and osteogenesis of the castor bean polymer doped with silica (SiO2) or barium titanate (BaTiO3) nanoparticles. Acta Cirurgica Brasileira30(4), 255-263. http://dx.doi.org/10.1590/S0102-865020150040000004. PMid:25923258. 

7 Merlini, C., Soldi, V., & Barra, G. M. O. (2011). Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing30(8), 833-840. http://dx.doi.org/10.1016/j.polymertesting.2011.08.008

8 Marinho, N. P., Nascimento, E. M., Nisgoski, S., Magalhães, W. L. E., Neto, S. C., & Azevedo, E. C. (2013). Caracterização física e térmica de compósito de poliuretano derivado de óleo de mamona associado com partículas de bambu. Polímeros Ciência e Tecnologia23(2), 201-205. 

9 Pradhan, K. C., & Nayak, P. L. (2012). Synthesis and characterization of polyurethane nanocomposite from castor oil- hexamethylene diisocyanate (HMDI). Advances in Applied Science Research3(5), 3045-3052. Retrieved in 2018, June 20, from: http://www.imedpub.com/articles/synthesis-and-characterization-of-polyurethane-nanocomposite-from-castoroil-hexamethylene-diisocyanate-hmdi.pdf 

10 Patel, V. R., Dumancas, G. G., Viswanath, L. C. K., Maples, R., & Subong, B. J. (2016). Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights9(1), 1-12. http://dx.doi.org/10.4137/LPI.S40233. PMid:27656091. 

11 Graça, Y. L. S. S., Opolski, A. C., Barboza, B. E. G., Erbano, B. O., Mazzaro, C. C., Klostermann, F. C., Sucharski, E. E., & Kubrusly, L. F. (2014). Biocompatibility of Ricinus communis polymer with addition of calcium carbonate compared to titanium. Experimental study in guinea pigs. Revista Brasileira de Cirurgia Cardiovascular; Orgao Oficial da Sociedade Brasileira de Cirurgia Cardiovascular29(2), 272-278. PMid:25140479. 

12 Santos, V. T., Facco, G. G., Ortiz, H. C., & Silva, I. S. (2017). Behavior study of the doped castor bean polymer rod with bioactive glass and hidroxyapatite in mice fêmur medullary canal. Acta Cirurgica Brasileira32(2), 116-124. http://dx.doi.org/10.1590/s0102-865020170204. PMid:28300879. 

13 Król, P. (2007). Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science52(6), 915-1015. http://dx.doi.org/10.1016/j.pmatsci.2006.11.001

14 Dave, V., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society21(1), 18-24. http://dx.doi.org/10.1016/j.jscs.2013.08.001

15 Sathiskumar, P. S., & Madras, G. (2011). Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polymer Degradation & Stability96(1), 1695-1704. http://dx.doi.org/10.1016/j.polymdegradstab.2011.07.002

16 Zhang, L., Zhang, M., Hu, L., & Zhou, Y. (2014). Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Industrial Crops and Products52(1), 380-388. http://dx.doi.org/10.1016/j.indcrop.2013.10.043

17 Lin, S., Huang, J., Chang, P. R., Wei, S., Xu, Y., & Zhang, Q. (2013). Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydrate Polymers95(1), 91-99. http://dx.doi.org/10.1016/j.carbpol.2013.02.023. PMid:23618244. 

18 Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., & Piszczyk, Ł. (2017). The influence of crude glycerol and castor oil-based polyol on thestructure and performance of rigid polyurethane-polyisocyanurate foams. Industrial Crops and Products95(1), 113-125. http://dx.doi.org/10.1016/j.indcrop.2016.10.023

19 Mutlu, H., & Meier, M. A. R. (2010). Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology112(1), 10-30. http://dx.doi.org/10.1002/ejlt.200900138

20 Monteiro, A. S. F., Macedo, L. G. S., Macedo, N. L., & Balducci, I. (2010). Polyurethane and PTFE membranes for guided bone regeneration: histopathological and ultrastructural evaluation. Medicina Oral, Patologia Oral y Cirugia Bucal15(2), e401-406. http://dx.doi.org/10.4317/medoral.15.e401. PMid:19767699. 

21 Marano, R., & Tincani, A. J. (2016). Is there an ideal implant for orbital reconstructions? Prospective 64-case study. Journal of Cranio-Maxillo-Facial Surgery44(10), 1682-1688. http://dx.doi.org/10.1016/j.jcms.2016.08.006. PMid:27637477. 

22 Costa, A. C. F. M., Lima, M. G., Lima, L. H. M. A., Cordeiro, V. V., Viana, K. M. S., Souza, C. V., & Lira, H. L. (2009). Hidroxiapatita: obtenção, caracterização e aplicações. Revista Eletrônica de Materiais e Processos4(3), 29-38. 

23 Sheikh, F. A., Kanjwal, M. A., Macossay, J., Barakat, N. A. M., & Kim, H. Y. (2012). A simple approach for synthesis, characterization and bioactivity for bovine bones to fabricate the polyurethane nanofiber containing hydroxyapatite nanoparticle. Express Polymer Letters6(1), 1-22. http://dx.doi.org/10.3144/expresspolymlett.2012.5. PMid:24416082. 

24 Potter, J. K., Malmquist, M., & Ellis, E. 3rd (2012). Biomaterials for reconstruction of the internal orbit. Oral and Maxillofacial Surgery Clinics of North America24(4), 609-627. http://dx.doi.org/10.1016/j.coms.2012.07.002. PMid:23107429. 

25 Alves, E. G. L., Rezende, C. M. F., Oliveira, H. P., Borges, N. F., Mantovani, P. F., & Lara, J. S. (2010). Avaliação mecânica da placa de compósito de poli-hidroxibutirato e hidroxiapatita em modelos ósseos de gato. Arquivo Brasileiro de Medicina Veterinária e Zootecnia62(6), 1367-1374. http://dx.doi.org/10.1590/S0102-09352010000600011

26 Cangemi, J. M., Santos, A. M., Claro Neto, S., & Chierice, G. O. (2008). Biodegradation of polyurethane derived from castor oil. Polímeros18(3), 201-206. http://dx.doi.org/10.1590/S0104-14282008000300004

27 Callister, W. D. Jr. (2002). Ciência e engenharia de materiais: uma introdução. Rio de Janeiro: LTC. 

28 Dubois, L., Steenen, S. A., Gooris, P. J. J., Bos, R. R. M., & Becking, A. G. (2016). Controversies in orbital reconstruction-III. Biomaterials for orbital reconstruction: a review with clinical recommendations. International Journal of Oral and Maxillofacial Surgery45(1), 41-50. http://dx.doi.org/10.1016/j.ijom.2015.06.024. PMid:26250602.

29 Stanton, D. C., Liu, F., Yu, J. W., & Mistretta, M. C. (2014). Use of bioresorbable plating systems in paediatric mandible fractures. Journal of Cranio-Maxillo-Facial Surgery42(7), 1305-1309. http://dx.doi.org/10.1016/j.jcms.2014.03.015. PMid:24815762. 

30 Al-Moraissi, E. A., & Ellis, E. 3rd (2015). Biodegradable and titanium osteosynthesis provide similar stability for orthognathic surgery. Journal of Oral and Maxillofacial Surgery73(9), 1795-1808. http://dx.doi.org/10.1016/j.joms.2015.01.035. PMid:25864125.

31 Reis, E. C. C., Borges, A. P. B., Oliveira, P. M., Bicalho, S. M. C. M., Reis, A. M., & Silva, C. L. (2012). Desenvolvimento e caracterização de membranas rígidas, osteocondutoras e reabsorvíveis de polihidroxibutirato e hidroxiapatita para regeneração periodontal. Polímeros: Ciência e Tecnologia22(1), 73-79. http://dx.doi.org/10.1590/S0104-14282012005000007

32 Kanno, T., Sukegawa, S., Furuki, Y., Nariai, Y., & Sekine, J. (2018). Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Japanese Dental Science Review54(3), 127-138. http://dx.doi.org/10.1016/j.jdsr.2018.03.003. PMid:30128060. 

5e8d4a710e8825c61cc9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections