Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.02316
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of degree of conversion, microtensile bond strength and mechanical properties of three etch-and-rinse dental adhesives

Freitas, Samantha Ariadne Alves de; Lanza, Marco Daniel Septimo; Carneiro, Karina Kato; Loguercio, Alessandro Dourado; Bauer, José

Downloads: 0
Views: 246

Abstract

This study evaluated microtensile bond strength (µTBS), degree of conversion, modulus of elasticity and ultramicrohardness of three etch-and-rinse adhesives systems. The materials evaluated were: Ambar (FGM), Optibond (Kerr) and Magic Bond (Vigodent). The degree of conversion was analyzed by FTIR/ATR. To evaluate bond strength (μTBS) in dentin, 15 teeth (n = 5) were restored and sliced to obtain the specimens (0.8mm2 ). The dynamic ultra microhardness tester was used to evaluate the hardness and modulus of elasticity. The Magic Bond adhesive system showed lower µTBS than Ambar and Optibond (p <0.001). For degree of conversion, comparisons between groups of adhesive systems evaluated showed statistically significant difference (p<0.001), with higher values for Ambar and Optibond when compared a Magic Bond. For modulus of elasticity and ultramicrohardness, Ambar and Magic Bond showed lower values than Optibond. The best results in all properties evaluated were obtained by the Optibond adhesive system.

Keywords

dental materials, adhesive, mechanical properties, microtensile bond strength, degree conversion

References

1. Pashley, D. H., Tay, F. R., Breschi, L., Tjäderhane, L., Carvalho, R. M., Carrilho, M., & Tezvergil-Mutluay, A. (2011). State of the art etch-and-rinse adhesives. Dental Materials, 27(1), 1-16. PMid:21112620. http://dx.doi.org/10.1016/j.dental.2010.10.016.

2. Sezinando, A. (2014). Looking for the ideal adhesive-A review. Revista Portuguesa de Estomatologia Medicina Dental Cirurgia Maxilofacial, 55(4), 194-206. http://dx.doi.org/10.1016/j.rpemd.2014.07.004.

3. Silva e Souza, M. H., Jr., Carneiro, K. G. K., Lobato, M. F., Silva e Souza, P. A. R., & Góes, M. F. (2010). Adhesive systems: important aspects related to their composition and clinical use. Journal of Applied Oral Science, 18(3), 207-214. PMid:20856995. http://dx.doi.org/10.1590/S1678-77572010000300002.

4. Carvalho, R. M., Mendonca, J. S., Santiago, S. L., Silveira, R. R., Garcia, F. C., Tay, F. R., & Pashley, D. H. (2003). Effects of HEMA/solvent combinations on bond strength to dentin. Journal of Dental Research, 82(8), 597-601. PMid:12885842. http://dx.doi.org/10.1177/154405910308200805.

5. De Munck, J., Van Landuyt, K., Peumans, M., Poitevin, A., Lambrechts, P., Braem, M., & Van Meerbeek, B. (2005). A critical review of the durability adhesion to tooth tissue: methods and results. Journal of Dental Research, 84(2), 118-132. PMid:15668328. http://dx.doi.org/10.1177/1544059105 08400204.

6. Abate, P. F., Rodriguez, V. I., & Macchi, R. L. (2000). Evaporation of solvent in one-bottle adhesives. Journal of Dentistry, 28(6), 437-440. PMid:10856809. http://dx.doi.org/10.1016/S0300-5712(00)00018-X.

7. Ikeda, T., De Munck, J., Shirai, K., Hikita, K., Inoue, S., Sano, H., Lambrechts, P., & Van Meerbeek, B. (2005). Effect of evaporation of primer components on ultimate tensile strength of primer-adhesive mixture. Dental Materials, 21(11), 1051-1058. PMid:16140370. http://dx.doi.org/10.1016/j.dental.2005.03.010.

8. Reis, A., Carrilho, M., Breschi, L., & Loguercio, A. D. (2013). Overview of clinical alternatives to minimize the degradation of the resin-dentin bonds. Operative Dentistry, 38(4), E103-E127. PMid:23527523. http://dx.doi.org/10.2341/12-258-LIT.

9. Paul, S. J., Leach, M., Rueggeberg, F. A., & Pashley, D. H. (1999). Effect of water content on the physical properties of model dentine primer and bonding resins. Journal of Dentistry, 27(3), 209-214. PMid:10079627. http://dx.doi.org/10.1016/S0300-5712(98)00042-6.

10. Ito, S., Hashimoto, M., Wadgaonkar, B., Svizero, N., Carvalho, R. M., Yiu, C., Rueggeberg, F. A., Foulger, S., Saito, T., Nishitani, Y., Yoshiyama, M., Tay, F. R., & Pashley, D. H. (2005). Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials, 26(33), 6449-6459. PMid:15949841. http://dx.doi.org/10.1016/j.biomaterials.2005.04.052.

11. Yiu, C. K., Pashley, E. L., Hiraishi, N., King, N. M., Goracci, C., Ferrari, M., Carvalho, R. M., Pashley, D. H., & Tay, F. R. (2005). Solvent and water retention in dental adhesive blends after evaporation. Biomaterials, 26(34), 6863-6872. PMid:15964621. http://dx.doi.org/10.1016/j.biomaterials.2005.05.011.

12. Cadenaro, M., Antoniolli, F., Sauro, S., Tay, F. R., Di Lenarda, R., Prati, C., Biasotto, M., Contardo, L., & Breschi, L. (2005). Degree of conversion and permeability of dental adhesives. European Journal of Oral Sciences, 113(6), 525-530. PMid:16324144. http://dx.doi.org/10.1111/j.1600-0722.2005.00251.x.

13. Van Meerbeek, B., De Munck, J., Yoshida, Y., Inoue, S., Vargas, M., Vijay, P., Van Landuyt, K., Lambrechts, P., & Vanherle, G. (2003). Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Operative Dentistry, 28(3), 215-235. http://dx.doi.org/10.2341/1559-2863-28-3-1. PMid:12760693.

14. Loguercio, A. D., Luque-Martinez, I., Muñoz, M. A., Szesz, A. L., Cuadros-Sánchez, J., & Reis, A. (2014). A comprehensive laboratory screening of three-step etch-and-rinse adhesives. Operative Dentistry, 39(6), 652-662. PMid:24720263. http://dx.doi.org/10.2341/13-236.

15. Borges, B. C. D., Souza-Junior, E. J., Brandt, W. C., Loguercio, A. D., Montes, M. A. J. R., Puppin-Rontani, R. M., & Sinhoreti, M. A. C. (2012). Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes. Operative Dentistry, 37(3), 246-252. PMid:22313268. http://dx.doi.org/10.2341/11-248-L.

16. Pianelli, C., Devaux, J., Bebelman, S., & Leloup, G. (1999). The Micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-ativated composites resins. Journal of Biomedical Materials Research, 48(5), 675-681. PMid:10490681. http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:5<675::AID-JBM11>3.0.CO;2-P.

17. Takahashi, A., Sato, Y., Uno, S., Pereira, P. N., & Sano, H. (2002). Effects of mechanical properties of adhesive resins on bond strength to dentin. Dental Materials, 18(3), 263-268. PMid:11823019. http://dx.doi.org/10.1016/S0109-5641(01)00046-X.

18.Goracci, C., Margvelashvili, M., Giovannetti, A., Vichi, A., & Ferrari, M. (2013). Shear bond strength of orthodontic brackets bonded with a new self-adhering flowable resin composite. Clinical Oral Investigations, 17(2), 609-617. PMid:22538472. http://dx.doi.org/10.1007/s00784-012-0729-x.

19. Yoshida, Y., Nagakane, K., Fukuda, R., Nakayama, Y., Okazaki, M., Shintani, H., Inoue, S., Tagawa, Y., Suzuki, K., De Munck, J., & Van Meerbeek, B. (2004). Comparative study on adhesive performance of functional monomers. Journal of Dental Research, 83(6), 454-458. PMid:15153451. http://dx.doi.org/10.1177/154405910408300604.

20. Sezinando, A., Perdigão, J., & Regalheiro, R. (2012). Dentin bond strengths of four adhesion strategies after thermal fatigue and 6-month water storage. Journal of Esthetic and Restorative Dentistry, 24(5), 345-355. PMid:23025319. http://dx.doi.org/10.1111/j.1708-8240.2012.00531.x.

21. Stona, P., Borges, G. A., Montes, M. A., Burnett, L. H., Jr., Weber, J. B., & Spohr, A. M. (2013). Effect of polyacrylic acid on the interface and bond strength of self-adhesive resin cements to dentin. The Journal of Adhesive Dentistry, 15(3), 221-227. PMid:23560256. http://dx.doi.org/10.3290/j.jad.a29531.

22. Luque-Martinez, I. V., Perdigão, J., Muñoz, M. A., Sezinando, A., Reis, A., & Loguercio, A. D. (2014). Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dental Materials, 30(10), 1126-1135. PMid:25139815. http://dx.doi.org/10.1016/j.dental.2014.07.002.

23. Fontes, S. T., Cubas, G. B., Flores, J. B., Montemezzo, M. L., Pinto, M. B., & Piva, E. (2010). Resin-dentin bond strength of 10 contemporary etch-and-rinse adhesive systems after one year of water storage. General Dentistry, 58(6), 257-261. PMid:21062710.

24. Hasegawa, T., Itoh, K., Koike, T., Yukitani, W., Hisamitsu, H., Wakumoto, S., & Fujishima, A. (1999). Effect of mechanical properties of resin composites on the efficacy of the dentin bonding system. Operative Dentistry, 24(6), 323-330. http://dx.doi.org/10.2341/1559-2863-24-6-1. PMid:10823080.

25. Carrilho, M. R., Carvalho, R. M., Tay, F. R., & Pashley, D. H. (2004). Effects of storage media on mechanical properties of adhesive systems. American Journal of Dentistry, 17(2), 104-108. PMid:15151336.

26. Carrilho, M. R. O., Tay, F. R., Pashley, D. H., Tjäderhane, L., & Carvalho, R. M. (2005). Mechanical stability of resindentin bond components. Dental Materials, 21(3), 232-241. PMid:15705430. http://dx.doi.org/10.1016/j.dental.2004.06.001.

27. Eick, J. D., Gwinnett, A. J., Pashley, D. H., & Robinson, S. J. (1997). Current concepts on adhesion to dentin. Critical Revision of Oral Biology and Medcine, 8(3), 306-335. PMid:9260046. http://dx.doi.org/10.1177/10454411970080030501.

28. Kanehira, M., Finger, W. J., Hoffmann, M., Endo, T., & Komatsu, M. (2006). Relationship between degree of polymerization and enamel bonding strength with self-etching adhesives. The Journal of Adhesive Dentistry, 8(4), 211-216. PMid:16958284.

29. Wang, Y., Spencer, P., Yao, X., & Ye, Q. (2006). Effect of coinitiator and water on the photoreactivity and photopolymerization of HEMA/camphorquinone-based reactant mixtures. Journal of Biomedical Materials Research. Part A, 78(4), 721-728. PMid:16739171. http://dx.doi.org/10.1002/jbm.a.30733.

30. Cadenaro, M., Antoniolli, F., Codan, B., Agee, K., Tay, F. R., Dorigo, E. S., Pashley, D. H., & Breschi, L. (2010). Influence of different initiators on the degree of conversion of experimental adhesive blends in relation to their hydrophilicity and solvent content. Dental Materials, 26(4), 288-294. PMid:20018363. http://dx.doi.org/10.1016/j.dental.2009.11.078.

31. Hass, V., Dobrovolski, M., Zander-Grande, C., Martins, G. C., Gordillo, L. A. A., Accorinte, M. L. R., Gomes, O. M. M., Loguercio, A. D., & Reis, A. (2013). Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dental Materials, 29(9), 921-928. PMid:23830512. http://dx.doi.org/10.1016/j.dental.2013.05.001.

32. Ferracane, J. L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials, 22(3), 211-222. PMid:16087225. http://dx.doi.org/10.1016/j.dental.2005.05.005.

33. Van Landuyt, K. L., Yoshida, Y., Hirata, I., Snauwaert, J., De Munck, J., Okazaki, M., Suzuki, K., Lambrechts, P., & Van Meerbeek, B. (2008). Influence of the chemical structure of functional monomers on their adhesive performance. Journal of Dental Research, 87(8), 757-761. PMid:18650548. http://dx.doi.org/10.1177/154405910808700804.

34. Yoshihara, K., Yoshida, Y., Nagaoka, N., Fukegawa, D., Hayakawa, S., Mine, A., Nakamura, M., Minagi, S., Osaka, A., Suzuki, K., & Van Meerbeek, B. (2010). Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomaterialia, 6(9), 3573-3582. PMid:20346420. http://dx.doi.org/10.1016/j.actbio.2010.03.024.

5b7c10b40e8825a973896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections