Design of a polymeric composite material femoral stem for hip joint implant
Costa, Romeu Rony Cavalcante da; Almeida, Fellipe Roberto Biagi de; Silva, Amanda Albertin Xavier da; Domiciano, Sandra Mara; Vieira, André Ferreira Costa
Abstract
Keywords
References
1 Liu, Y., Yang, J. P., Xiao, H. M., Qu, C. B., Feng, Q. P., Fu, S. Y., & Shindo, Y. (2012). Role of matrix modification on interlaminar shear strength of glass fiber/epoxy composites. Composites Part B, Engineering, 43(1), 95-98. http://dx.doi.org/10.1016/j.compositesb.2011.04.037.
2 Harizi, W., Chaki, S., Bourse, G., & Ourak, M. (2014). Mechanical damage assessment of glass fiber-reinforced polymer composites using passive infrared thermography. Composites Part B, Engineering, 59, 74-79. http://dx.doi.org/10.1016/j.compositesb.2013.11.021.
3 Yuanjian, T., & Isaac, D. H. (2007). Combined impact and fatigue of glass fiber reinforced composites. Composites Part B, Engineering, 39(3), 505-512. http://dx.doi.org/10.1016/j.compositesb.2007.03.005.
4 Vieira, A. F. (2004). Design of a femoral component of a hip prosthesis articulate in composite materials (Master's thesis). University of Porto, Portugal.
5 Bougherara, H., Zdero, R., Dubov, A., Shah, S., Khurshid, S., & Schemitsch, E. H. (2011). A preliminary biomechanical study of a novel carbon-fiber hip implant versus standard metallic hip implants. Medical Engineering & Physics, 33(1), 121-128. http://dx.doi.org/10.1016/j.medengphy.2010.09.011. PMid:20952241.
6 Silvestre, G. D., Fo. (2006). Design and structural analysis of femoral stem hip implant in polymeric composite material (Doctoral dissertation). Universidade de São Paulo, São Carlos.
7 Parthasarathy, M., & Sethuraman, S. (2014). Hierarchical characterization of biomedical polymers. In S. G. Kumbar, C. T. Laurencin & M. Deng (Eds.), Natural and synthetic biomedical polymers (pp. 33-42). USA: Elsevier. http://dx.doi.org/10.1016/B978-0-12-396983-5.00002-8
8 Azevedo, E. C., Claro, S., No., Chierice, G. O., & Lepienski, C. M. (2009). Instrumented indentation applied to the mechanical characterization of polyurethane derived from castor oil. Polímeros: Ciência e Tecnologia, 19(4), 336-343. http://dx.doi.org/10.1590/S0104-14282009000400014.
9 Charlon, M., Heinrich, B., Matter, Y., Couzigné, E., Donnio, B., & Avérous, L. (2014). Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acid, and different renewable diols. European Polymer Journal, 61, 197-205. http://dx.doi.org/10.1016/j.eurpolymj.2014.10.012.
10 Cornille, A., Dworakowska, S., Bogdal, D., Boutevin, B., & Caillol, S. (2015). A new way of creating cellular polyurethane materials: NIPU foams. European Polymer Journal, 66, 129-138. http://dx.doi.org/10.1016/j.eurpolymj.2015.01.034.
11 Fu, C., Liu, J., Xia, H., & Shen, L. (2015). Effect of structure on the properties of polyurethanes based on aromatic cardanol-based polyols prepared by thiol-ene coupling. Progress in Organic Coatings, 83, 19-25. http://dx.doi.org/10.1016/j.porgcoat.2015.01.020.
12 Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157-164. http://dx.doi.org/10.1016/j.porgcoat.2012.09.001.
13 Trinca, R. B., & Felisberti, M. I. (2015). Segmented polyurethanes based on poly(L-lactide), poly(ethylene glycol) and poly(trimethylene carbonate): physico-chemical and morphology. European Polymer Journal, 62, 77-86. http://dx.doi.org/10.1016/j.eurpolymj.2014.11.008.
14 Sousa, T. P. T., Costa, M. S. T., Guilherme, R., Orcini, W., Holgado, L. A., Silveira, E. M. V., Tavano, O., Magdalena, A. G., Catanzaro-Guimarães, S. A., & Kinoshita, A. (2018). Polyurethane derived from Ricinus Communis as graft for bone defect treatments. Polímeros: Ciência e Tecnologia, 28(3), 246-255. http://dx.doi.org/10.1590/0104-1428.03617.
15 Souza, A. M. G. (2002). Biopolymer of castor for reconstruction of failures bone after tumor-resection: clinical application (Doctoral dissertation). Universidade Federal de Pernambuco, Recife.
16 Dontos, C. A. (2005). Fio lifting biológico: avaliação de sua biocompatibilidade e eficácia no rejuvenescimento facial (Master’s thesis). Universidade de São Paulo, São Carlos.
17 Associação Brasileira de Normas Técnicas. (2011). ABNT NBR 7206-4: determination fatigue strength properties and performance of femoral components with stem. Rio de Janeiro: ABNT.
18 Associação Brasileira de Normas Técnicas. (2004). ABNT NBR 7206-6: determination of fatigue properties head and neck region of femoral stems. Rio de Janeiro: ABNT.
19 Simões, J. A., & Marques, A. T. (2005). Design of a composite hip femoral prosthesis. Materials & Design, 26(5), 391-401. http://dx.doi.org/10.1016/j.matdes.2004.07.024.
20 Bougherara, H., Bureau, M., Campbell, M., Vadean, A., & Yahia, L. (2007). Design of a biomimetic polymer-composite hip prosthesis. Journal of Biomedical Materials Research: Part A, 82(1), 27-40. http://dx.doi.org/10.1002/jbm.a.31146. PMid:17265439.
21 Bae, J. Y., Farooque, U., Lee, K., Kim, G. H., Jeon, I., & Yoon, T. R. (2011). Development of hip joint prostheses with modular stems. Computer Aided Design, 43(9), 1173-1180. http://dx.doi.org/10.1016/j.cad.2011.05.004.
22 Ruben, R. B., Fernandes, P. R., & Folgado, J. (2012). On the optimal shape of hip implants. Journal of Biomechanics, 45(2), 239-246. http://dx.doi.org/10.1016/j.jbiomech.2011.10.038. PMid:22115063.
23 Costa, R. R. C. (2007). Applicability of constitutive models for analyzing the mechanical behavior of a biopolymer (Doctoral dissertation). Universidade de São Paulo, São Carlos.
24 Taguti, M. V. H. (2015). Characterization and modeling of the mechanical behavior of polyurethane enriched with calcium carbonate (Master’s thesis). Universidade Tecnológica Federal do Paraná, Cornélio Procópio.
25 Almeida, F. R. B. (2016). Estudo, dimensionamento e desenvolvimento de um modelo de prótese de quadril em material compósito com matriz biopolimérica (Master’s thesis). Universidade Tecnológica Federal do Paraná, Cornélio Procópio.
26 Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., & Duda, G. N. (2001). Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34(7), 859-871. http://dx.doi.org/10.1016/S0021-9290(01)00040-9. PMid:11410170.
27 Ramakrishna, S., Mayer, J., Wintermantel, E., & Leong, K. W. (2000). Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 61(9), 1189-1224.
28 Costa, R. R. C., Vieira, A. F. C., Guedes, R., & Tita, V. (2017). A biopolymer derived from castor oil polyurethane: experimental and numerical analyses. In V. K. Thakur, M. K. Thakur & M. R. Kessler (Eds.), Handbook of composites from renewable materials (pp. 581-606). Hoboken: Wiley-Scrivener Publishing. http://dx.doi.org/10.1002/9781119441632.ch60
29 Associação Brasileira de Normas Técnicas. (2008). ABNT NBR 7206-1: classifies the dimensions of the prosthesis. Rio de Janeiro: ABNT.
30 Associação Brasileira de Normas Técnicas. (2004). ABNT NBR 7206-10: determination of resistance to static load of modular femoral heads. Rio de Janeiro: ABNT.
31 Turner, T. M., Sumner, D. R., Urban, R. M., Rivero, D. P., & Galante, J. O. A. (1986). A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. The Journal of Bone & Joint Surgery, 68(9), 1396-1409. http://dx.doi.org/10.2106/00004623-198668090-00013. PMid:3782212.