Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Application of ashes as filling in reprocessed polypropylene: thermomechanical properties of composites

Crespo, Lina Marcela; Caicedo, Carolina

Downloads: 0
Views: 154


The life cycle of a product depends to a great extent on its reuse and ease of recycling. This work had developed of composite materials of reprocessed polypropylene composites with rice husk ash (RHA) and sugarcane bagasse ash (SBA) through the coextrusion and injection processes as main purpose. The polymeric matrix was reprocesed until six generations by the injection technique. The reprocessed PP was mixed in 80:20 proportions with respect to filler mineral, using maleic anhydride as coupling agent in a coextrusion machine. The new series of composite materials were analyzed thermal, mechanical, rheological and morphologically. The incorporation of ashes in the PP matrix achieved characteristics of improved tensile strength, conserving the thermal properties. For this reason, this work presents an alternative for the manufacture of composite materials from post-industrial waste.


rheological analysis; rice husk ash; sugarcane bagasse ash; mechanical properties; thermal properties


1 Arjmandi, R., Ismail, A., Hassan, A., & Abu Bakar, A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction & Building Materials , 152, 484-493. http://dx.doi.org/10.1016/j.conbuildmat.2017.07.052. 

2 Caicedo, C., Vázquez Arce, A., Crespo, L. M., De la Cruz, H., & Ossa, Ó. H.. (2015). Material compuesto de matriz polipropileno (PP) y fibra de cedro: influencia del compatibilizante PP-g-MA. Informador Técnico79(2), 118-126. http://dx.doi.org/10.23850/22565035.156. 

3 Carrillo-Escalante, H. J., Alvarez-Castillo, A., Valadez-Gonzalez, A., & Herrera-Franco, P. J. (2016). Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix. Carbon Letters19(1), 47-56. http://dx.doi.org/10.5714/CL.2016.19.047.

4 Eftekhari, M., & Fatemi, A. (2016). Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites. International Journal of Fatigue91, 136-148. http://dx.doi.org/10.1016/j.ijfatigue.2016.05.031. 

5 Barczewski, M., Matykiewicz, D., Andrzejewski, J., & Skorczewska, K. (2016). Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites. Journal of Advanced Research7(3), 373-380. http://dx.doi.org/10.1016/j.jare.2016.01.001. PMid:27222742. 

6 Zhao, S., Chen, F., Huang, Y., Dong, J. Y., & Han, C. C. (2014). Crystallization behaviors in the isotactic polypropylene/graphene composites. Polymer55(16), 4125-4135. http://dx.doi.org/10.1016/j.polymer.2014.06.027. 

7 Bandyopadhyay, J., Ray, S. S., Ojijo, V., & Khoza, M. (2017). Development of a highly nucleated and dimensionally stable isotactic polypropylene/nanoclay composite using reactive blending. Polymer117, 37-47. http://dx.doi.org/10.1016/j.polymer.2017.04.013. 

8 Mireya, M., Sánchez, J. J., Jiménez, M. C., Salas, L., Santana, O. O., Gordillo, A., Maspoch, M. L., & Müller, A. J. (2005). Propiedades Mecánicas y Comportamiento a Fractura de un Polipropileno Homopolímero comparado con un Copolímero de impacto grado comercial. Revista Latinoamericana de Metalurgia y Materiales , 25(1-2), 31-45. Retrieved in 2018, March 14, from http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0255-69522005000100005&lng=es&tlng=es 

9 Tang, L. C., Wang, X., Wan, Y. J., Wu, L. B., Jiang, J. X., & Lai, G. Q. (2013). Mechanical properties and fracture behaviors of epoxy composites with multi-scale rubber particles. Materials Chemistry and Physics141(1), 333-342. http://dx.doi.org/10.1016/j.matchemphys.2013.05.018. 

10 Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2017). A comparison between bio-and mineral calcium carbonate on the properties of polypropylene composites. Construction & Building Materials134, 549-555. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.199. 

11 Makhlouf, A., Satha, H., Frihi, D., Gherib, S., & Seguela, R. (2016). Optimization of the crystallinity of polypropylene/submicronic-talc composites: the role of filler ratio and cooling rate. Express Polymer Letters10(3), 237-247. http://dx.doi.org/10.3144/expresspolymlett.2016.22. 

12 Caicedo, C., Vázquez-Arce, A., Ossa, O. H., De la Cruz, H., & Maciel-Cerda, A. (2018). Physicomechanical behavior of composites of polypropylene, and mineral fillers with different process cycles. Dyna85(207), 260-268. http://dx.doi.org/10.15446/dyna.v85n207.71894. 

13 Pongdong, W., Kummerlöwe, C., Vennemann, N., Thitithammawong, A., & Nakason, C. (2018). A comparative study of rice husk ash and siliceous earth as reinforcing fillers in epoxidized natural rubber composites. Polymer Composites39(2), 414-426. http://dx.doi.org/10.1002/pc.23951. 

14 Organización de las Naciones Unidas para la Alimentación y la Agricultura – FAO. (2017). Seguimiento del mercado del arroz de la FAO (SMA). Rome: FAO. Retrieved in 2018, March 14, from http://www.fao.org/economic/est/publications/publicaciones-sobre-el-arroz/seguimiento-del-mercado-del-arroz-sma/es/ 

15 Rozman, H. D., Yeo, Y. S., Tay, G. S., & Abubakar, A. (2003). The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polymer Testing22(6), 617-623. http://dx.doi.org/10.1016/S0142-9418(02)00165-4. 

16 Premalal, H. G., Ismail, H., & Baharin, A. (2003). Effect of processing time on the tensile, morphological, and thermal properties of rice husk powder-filled polypropylene composites. Polymer-Plastics Technology and Engineering42(5), 827-851. http://dx.doi.org/10.1081/PPT-120024998. 

17 Battegazzore, D., Bocchini, S., Alongi, J., & Frache, A. (2014). Rice husk as bio-source of silica: preparation and characterization of PLA–silica bio-composites. RSC Advances4(97), 54703-54712. http://dx.doi.org/10.1039/C4RA05991C. 

18 Pongdong, W., Kummerlöwe, C., Vennemann, N., Thitithammawong, A., & Nakason, C. (2016). Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: influences of RHA loading. Polymer Testing53, 245-256. http://dx.doi.org/10.1016/j.polymertesting.2016.05.026. 

19 Yswarya, E. P., Vidya Francis, K. F., Renju, V. S., & Thachil, E. T. (2012). Rice husk ash: a valuable reinforcement for high density polyethylene. Materials & Design , 41, 1-7. http://dx.doi.org/10.1016/j.matdes.2012.04.035. 

20 Ismail, H., Mega, L., & Khalil, H. P. S. A. (2001). Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polymer International50(5), 606-611. http://dx.doi.org/10.1002/pi.673. 

21 Santos, R. J. D., Agostini, D. L. D. S., Cabrera, F. C., Reis, E. A. P. D., Ruiz, M. R., Budemberg, E. R., Teixeira, S. R., & Job, A. E. (2014). Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros: Ciência e Tecnologia24(6), 646-653. http://dx.doi.org/10.1590/0104-1428.1547. 

22 Ren, F., Ren, P. G., Di, Y. Y., Chen, D. M., & Liu, G. G. (2011). Thermal, mechanical and electrical properties of linear low-density polyethylene composites filled with different dimensional SiC particles. Polymer-Plastics Technology and Engineering50(8), 791-796. http://dx.doi.org/10.1080/03602559.2011.551967. 

23 Sousa, A. M. F. D., Peres, A. C. D. C., Furtado, C. R. G., & Visconte, L. L. Y. (2017). Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash. Polímeros: Ciência e Tecnologia27(2), 93-99. http://dx.doi.org/10.1590/0104-1428.1959. 

24 Pardo, S. G., Bernal, C., Abad, M. J., Cano, J., & Barral Losada, L. (2009). Deformation and fracture behavior of PP/ash composites. Composite Interfaces16(2-3), 97-114. http://dx.doi.org/10.1163/156855408X402830. 

25 Mantovani, G. A., Oliveira, J. H. D., Santos, A. D., Rinaldi, A. W., Moisés, M. P., Radovanovic, E., & Fávaro, S. L. (2017). Mechanical recycling of tags and labels residues using sugarcane bagasse ash. Polímeros: Ciência e Tecnologia , 27(1), 8-15. http://dx.doi.org/10.1590/0104-1428.2278. 

26 Igarza, E., Pardo, S. G., Abad, M. J., Cano, J., Galante, M. J., Pettarin, V., & Bernal, C. (2014). Structure–fracture properties relationship for Polypropylene reinforced with fly ash with and without maleic anhydride functionalized isotactic Polypropylene as coupling agent. Materials & Design55, 85-92. http://dx.doi.org/10.1016/j.matdes.2013.09.055. 

27 Caicedo, C., Crespo-Delgado, L. M., De La Cruz-Rodríguez, H., & Álvarez-Jaramillo, N. A. (2017). Propiedades termo-mecánicas del Polipropileno: efectos durante el reprocesamiento. Ingeniería, Investigación y Tecnología , 18(3), 245-252. http://dx.doi.org/10.22201/fi.25940732e.2017.18n3.022. 

5db083880e8825241e61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections