Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.01718
Polímeros: Ciência e Tecnologia
Original Article

Preliminary analysis of N-vinylpyrrolidone based polymer gel dosimeter

Dias, Juliana Rosada;  Mangueira, Thyago Fressatti;  Lopes, Roseany de Vasconcelos Vieira;  Sales, Maria José Araújo;  Ceschin, Artemis Marti

Downloads: 0
Views: 171

Abstract

Abstract: This paper aims to evaluate the dosimetric characteristics of modified VIPARnd for radiotherapy dosimetry using optical investigations. The absorbance spectrum of the irradiated gel dosimeter was evaluated optically with spectrophotometer techniques and with a CMOS imaging system. The useful dose range for the peak value and the relative area under the absorbance curve is 3-20 Gy. The dose-response curve for CMOS readout has an interval of linearity from 3-20 Gy. The modified VIPARnd developed has a good dose range and good temporal stability in the spectrophotometric analysis of the intervals studied. The CMOS readout is transportable, cheaper, easier to use and an excellent alternative for dosimetry.

Keywords

polymer gel dosimetry; optical analysis; N-vinylpyrrolidone; radiotherapy

References

Seco, J., Clasie, B., & Partridge, M. (2014). Review on the characteristics of radiation detectors for dosimetry and imaging. Physics in Medicine and Biology , 59(20), 303-347. http://dx.doi.org/10.1088/0031-9155/59/20/R303. PMid:25229250. 

Maryanski, M. J., Ibbott, G. S., Eastman, P., Schulz, R. J., & Gore, J. C. (1996). Radiation therapy dosimetry using magnetic resonance imaging of polymer gels. Medical Physics , 23(5), 699-705. http://dx.doi.org/10.1118/1.597717. PMid:8724743. 

Un, A. (2013). Water and tissue equivalency of some gel dosimeters for photon energy absorption. Applied Radiation and Isotopes82, 258-263. http://dx.doi.org/10.1016/j.apradiso.2013.09.002. PMid:24080343.

Gambarini, G., Veronese, I., Bettinelli, L., Felisi, M., Gargano, M., Ludwig, N., Lenardi, C., Carrara, M., Collura, G., Gallo, S., Longo, A., Marrale, M., Tranchina, L., & d’Errico, F. (2017). Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiation Measurements106, 622-627. http://dx.doi.org/10.1016/j.radmeas.2017.03.024. 

Vedelago, J., Obando, D. C., Malano, F., Conejeros, R., Figueroa, R., Garcia, D., González, G., Romero, M., Santibañez, M., Strumia, M. C., Velásquez, J., Mattea, F., & Valente, M. (2016). Fricke and polymer gel 2D dosimetry validation using Monte Carlo simulation. Radiation Measurements91, 54-64. http://dx.doi.org/10.1016/j.radmeas.2016.05.003. 

Collura, G., Gallo, S., Tranchina, L., Abbate, B. F., Bartolotta, A., D’Errico, F., & Marrale, M. (2018). Analysis of response of PVA-GTA Fricke-gel dosimeters through clinical magnetic resonance imaging. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms414, 146-153. http://dx.doi.org/10.1016/j.nimb.2017.06.012. 

Marini, A., Lazzeri, L., Cascone, M. G., Ciolini, R., Tana, L., & D’Errico, F. (2017). Fricke gel dosimeters with low-diffusion and high-sensitivity based on a chemically cross-linked PVA matrix. Radiation Measurements106, 618-621. http://dx.doi.org/10.1016/j.radmeas.2017.02.012. 

Novotný, J. Jr, Spěváček, V., Dvořák, P., Novotný, J., & Čechák, T. (2001). Three-dimensional polymer gel dosimetry: basic physical properties of the dosimeter. Radiation Physics and Chemistry61(3-6), 255-258. http://dx.doi.org/10.1016/S0969-806X(01)00249-3. 

Fong, P. M., Keil, D. C., Does, M. D., & Gore, J. C. (2001). Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Physics in Medicine and Biology46(12), 3105-3113. http://dx.doi.org/10.1088/0031-9155/46/12/303. PMid:11768494. 

Gore, J. C. (2003). Improved polymer gels for radiation dosimetry by MRI. Abstracts of Nihgrants. Academic Radiology10(9), 1066. http://dx.doi.org/10.1016/S1076-6332(03)00283-6. 

Baldock, C., De Deene, Y., Doran, S., Ibbott, G., Jirasek, A., Lepage, M., McAuley, K. B., Oldham, M., & Schreiner, L. J. (2010). Polymer gel dosimetry. Physics in Medicine and Biology55(5), R1-R63. http://dx.doi.org/10.1088/0031-9155/55/5/R01. PMid:20150687. 

Baras, P., Seimenis, I., Kipouros, P., Papagiannis, P., Angelopoulos, A., Sakelliou, L., Pappas, E., Baltas, D., Karaiskos, P., Sandilos, P., & Vlachos, L. (2002). Polymer gel dosimetry using a three-dimensional MRI acquisition technique. Medical Physics , 29(11), 2506-2516. http://dx.doi.org/10.1118/1.1514657. PMid:12462715. 

Vergote, K., De Deene, Y., Claus, F., De Gersem, W., Van Duyse, B., Paelinck, L., Achten, E., De Neve, W., & De Wagter, C. (2003). Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology67(1), 119-128. http://dx.doi.org/10.1016/S0167-8140(02)00376-6. PMid:12758248. 

Gustavsson, H., Karlsson, A., Back, S. A. J., Olsson, L. E., Haraldsson, P., Engström, P., & Nyström, H. (2003). MAGIC-type polymer gel for three-dimensional dosimetry: Intensity-modulated radiation therapy verification. Medical Physics , 30(6), 1264-1271. http://dx.doi.org/10.1118/1.1576392. PMid:12852552. 

Vergote, K., Deene, Y. D., Duthoy, W., Gersem, W. D., Neve, W. D., Achten, E., & Wagter, C. D. (2004). Validation and application of polymer gel dosimetry for the dose verification of an intensity-modulated arc therapy (IMAT) treatment. Physics in Medicine and Biology49(2), 287-305. http://dx.doi.org/10.1088/0031-9155/49/2/008. PMid:15083672. 

Ceberg, S., Gagne, I., Gustafsson, H., Scherman, J. B., Korreman, S. S., Kjaer-Kristoffersen, F., Hilts, M., & Bäck, S. A. (2010). RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation. Physics in Medicine and Biology , 55(17), 4885-4898. http://dx.doi.org/10.1088/0031-9155/55/17/001. PMid:20679702.

Watanabe, Y., Akimitsu, T., Hirokawa, Y., Mooij, R., & Perera, G. (2005). Evaluation of dose delivery accuracy of Gamma Knife by polymer gel dosimetry. Journal of Applied Clinical Medical Physics6(3), 133-142. http://dx.doi.org/10.1120/jacmp.v6i3.2110. PMid:16143798. 

Gopishankar, N., Watanabe, Y., & Subbiah, V. (2011). MRI-based polymer gel dosimetry for validating plans with multiple matrices in Gamma Knife stereotactic radiosurgery. Journal of Applied Clinical Medical Physics12(2), 133-145. http://dx.doi.org/10.1120/jacmp.v12i2.3333. PMid:21587176. 

Gustavsson, H., Bäck, S. A., Medin, J., Grusell, E., & Olsson, L. E. (2004). Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Physics in Medicine and Biology49(17), 3847-3855. http://dx.doi.org/10.1088/0031-9155/49/17/002. PMid:15470909. 

Zeidan, O. A., Sriprisan, S. I., Lopatiuk-Tirpak, O., Kupelian, P. A., Meeks, S. L., Hsi, W. C. Z., Li, Z., Palta, J. R., & Maryanski, M. J. (2010). Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Medical Physics37(5), 2145-2152. http://dx.doi.org/10.1118/1.3388869. PMid:20527548. 

Mangueira, T. F., Silva, C. F., Coelho, P. R. P., & Campos, L. L. (2010). Gamma/neutron dose evaluation using Fricke gel and alanine gel dosimeters to be applied in boron neutron capture therapy. Applied Radiation and Isotopes68(4-5), 791-794. http://dx.doi.org/10.1016/j.apradiso.2010.01.027. PMid:20122843. 

Chang, Y. J., Hsieh, B. T., & Liang, J. A. (2011). A systematic approach to determine optimal composition of gel used in radiation therapy. Nuclear Instruments and Methods in Physics Research Section A652(1), 783-785. http://dx.doi.org/10.1016/j.nima.2010.09.097. 

Abtahi, S. M., Aghamiri, S. M. R., & Khalafi, H. (2014). Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. Journal of Radioanalytical and Nuclear Chemistry300(1), 287-301. http://dx.doi.org/10.1007/s10967-014-2983-7. 

Kozicki, M. (2011). How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter. Radiation Physics and Chemistry80(12), 1419-1436. http://dx.doi.org/10.1016/j.radphyschem.2011.07.011. 

Pappas, E., Maris, T., Angelopoulos, A., Paparigopoulou, M., Sakelliou, L., Sandilos, P., Voyiatzi, S., & Vlachos, L. (1999). A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry. Physics in Medicine and Biology44(10), 2677-2684. http://dx.doi.org/10.1088/0031-9155/44/10/320. PMid:10533935. 

Mattea, F., Romero, M. R., Vedelago, J., Quiroga, A., Valente, M., & Strumia, M. C. (2015). Molecular structure effects on the post irradiation diffusion in polymer gel dosimeters. Applied Radiation and Isotopes100, 101-107. http://dx.doi.org/10.1016/j.apradiso.2015.03.007. PMid:25773266. 

Lotfy, S., Basfar, A. A., Moftah, B., & Al-Moussa, A. A. (2017). Comparative study of nuclear magnetic resonance and UV–visible spectroscopy dose-response of polymer gel based on N-(Isobutoxymethyl) acrylamid. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms413, 42-50. http://dx.doi.org/10.1016/j.nimb.2017.09.033. 

Kozicki, M., Maras, P., Rybka, K., Biegański, T., Kadłubowski, S., & Petrokokkinos, L. (2007). On the development of the VIPAR polymer gel dosimeter for three-dimensional dose measurements. Macromolecular Symposia254(1), 345-352. http://dx.doi.org/10.1002/masy.200750850. 

Papoutsaki, M. V., Maris, T. G., Pappas, E., Papadakis, A. E., & Damilakis, J. (2013). Dosimetric characteristics of a new polymer gel and their dependence on post-preparation and post-irradiation time: Effect on X-ray beam profile measurements. Physica Medica29(5), 453-460. http://dx.doi.org/10.1016/j.ejmp.2013.01.003. PMid:23375524. 

Tauhata, L., Salati, I. P., Di Prinzio, R., & Di Prinzio, A. R. (2006). Radioproteção e dosimetria: fundamentos. Rio de Janeiro: IRD/CNEN. 

Wang, Y., & Wang, H. (2009). The radiation-induced peroxidation of poly(N-vinylpyrrolidone) in an aqueous solution. Radiation Physics and Chemistry78(3), 234-237. http://dx.doi.org/10.1016/j.radphyschem.2008.11.005. 

Hassouna, F., Therias, S., Mailhot, G., & Gardette, J. (2009). Photooxidation of poly(N-vinylpyrrolidone) (PVP) in the solid state and in aqueous solution. Polymer Degradation & Stability , 94(12), 2257-2266. http://dx.doi.org/10.1016/j.polymdegradstab.2009.08.007. 

Kozicki, M., Filipczak, K., & Rosiak, J. M. (2003). Reactions of hydroxyl radicals, H atoms and hydrated electrons with N-N’-methylenebisacrylamide in aqueous solution. A pulse radiolysis study. Radiation Physics and Chemistry68(5), 827-835. http://dx.doi.org/10.1016/S0969-806X(03)00311-6. 

Tranter, G. E. (2017). UV–Visible Absorption Spectrometers. In J. Lindon, G. E. Tranter, D. Koppenaa (Eds.), Encyclopedia of spectroscopy and spectrometry (491-494). Oxford: Academic Press. http://dx.doi.org/10.1016/B978-0-12-409547-2.12689-7. 

5c55b2660e8825620cb25bb2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections