Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.01717
Polímeros: Ciência e Tecnologia
Original Article

Effects of mercerization in the chemical and morphological properties of amazon piassava

Rebelo, Viviane;  Silva, Yuri da;  Ferreira, Saulo;  Toledo Filho, Romildo;  Giacon, Virginia

Downloads: 0
Views: 127

Abstract

Abstract: The objective of this work was to investigate the effects of mercerization on chemical, morphological and thermal properties of Amazon Piassava Fibers. The effect of this treatment was studied using XRF, SEM, XRD and TGA. The fibers have been treated in 5% and 10% NaOH for 60 min. The XRF results for treated and untreated fibers showed that there is a decrease in the amount of SiO 2 by increasing the NaOH concentration. It has been possible to observe through SEM in untreated fiber that the surface presents a well arranged pattern of silicon rich star-like protrusions. For the two concentrations, SEM allowed to notice that the removal of deleterious surface impurities and fiber roughness was enhanced. The removal of organic material after treatment can be observed in the TGA analysis. XRD analysis indicate an increase in the crystallinity index, 0.19 to 0.31 after the treatment for 10% concentration solutions.

Keywords

alkaline treatment; mercerization; piassava fibers; superficial modification

References

1 Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites. Part A, Applied Science and Manufacturing77, 1-25. http://dx.doi.org/10.1016/j.compositesa.2015.06.007. 

2 Satyanarayana, K. G., Guimaraes, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Composites. Part A, Applied Science and Manufacturing38(7), 1694-1709. http://dx.doi.org/10.1016/j.compositesa.2007.02.006. 

3 Mwaikambo, L. Y., & Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science , 84(12), 2222-2234. http://dx.doi.org/10.1002/app.10460. 

4 Milanese, A. C., Cioffi, M. O. H., & Voorwald, H. J. C. (2011). Mechanical behavior of natural fiber composites. Engineering Procedia10, 2022-2027. http://dx.doi.org/10.1016/j.proeng.2011.04.335. 

5 Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibers. Progress in Polymer Science24(2), 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5. 

6 Arrakhiz, F. Z., El Achaby, M., Kakou, A. C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., Fassi-Fehri, O., & Qaiss, A. (2012). Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments. Materials & Design37, 379-383. http://dx.doi.org/10.1016/j.matdes.2012.01.020. 

7 Fiorelli, J., Curtolo, D. D., Barrero, N. G., Savastano, H. Jr, Pallone, E. M. J. A., & Johnson, R. (2012). Particulate composite based on coconut fiber and castor oil polyurethane adhesive: an eco-efficient product. Industrial Crops and Products40(10), 69-75. http://dx.doi.org/10.1016/j.indcrop.2012.02.033. 

8 Sethi, S., & Ray, B. C. (2015). Environmental effects on fiber reinforced polymeric composites Evolving reasons and remarks on interfacial strength and stability. Advances in Colloid and Interface Science217, 43-67. http://dx.doi.org/10.1016/j.cis.2014.12.005. PMid:25578406. 

9 Doan, T. T. L., Gao, S. L., & Mader, E. (2006). Jute polypropylene composites I: effect of matrix modification. Composites Science and Technology66(7-8), 952-963. http://dx.doi.org/10.1016/j.compscitech.2005.08.009. 

10 Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber- reinforced composites: a review. Journal of Polymers and the Environment15(1), 25-33. http://dx.doi.org/10.1007/s10924-006-0042-3. 

11 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant based natural fiber reinforced polymer composites: an overview. Composites. Part B, Engineering43(7), 2883-2892. http://dx.doi.org/10.1016/j.compositesb.2012.04.053. 

12 Mohan, T. P., & Kanny, K. (2012). Chemical treatment of sisal fiber using alkali and clay method. Applied Science and Manufacturing, 43(11), 1989-1998. http://dx.doi.org/10.1016/j.compositesa.2012.07.012.

13 John, M. J., & Anandjiwala, R. D. (2007). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites , 29(2), 187-207. http://dx.doi.org/10.1002/pc.20461. 

14 Reis, J. M. L., & Motta, E. P. (2014). Mechanical behavior of piassava fiber reinforced castor oil polymer mortars. Composite Structures111(1), 468-472. http://dx.doi.org/10.1016/j.compstruct.2014.01.023. 

15 Segal, L., Creely, J. J. Jr, Martin, A. E. Jr, & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of nature cellulose using the X-ray diffractometer. Textile Research Journal29(10), 786-794. http://dx.doi.org/10.1177/004051755902901003. 

16 Calado, V., Barreto, D. W., & D’almeida, J. R. M. (2000). The effect of a chemical treatment on the structure and morphology of coir fibers. Journal of Materials Science Letters19(23), 2151-2153. http://dx.doi.org/10.1023/A:1026743314291.

17 Park, S., Baker, J. O., Himmel, M. E., Parilla, A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnology for Biofuels3(1), 10. http://dx.doi.org/10.1186/1754-6834-3-10. PMid:20497524. 

18 Kalia, S., & Sheoran, R. (2011). Modification of ramie fibers using microwave-assisted grafting and cellulase enzyme-assisted biopolishing: a comparative study of morphology, thermal stability, and crystallinity. Journal of Polymer Analysis and Characterization , 16(5), 307-318. http://dx.doi.org/10.1080/1023666X.2011.587946. 

19 Mokaloba, N., & Batane, R. (2014). The effects of mercerization and acetylation treatments on the properties of sisal fiber and its interfacial adhesion characteristics on polypropylene. International Journal of Engineering Science and Technology6(4), 83-97. http://dx.doi.org/10.4314/ijest.v6i4.9. 

20 D’Almeida, J. R. M., Aquino, R. C. M. P., & Monteiro, S. N. (2006). Tensile mechanical properties, morphological aspects and chemical characterization of piassava ( Attaleafunifera) fibers. Composites. Part A, Applied Science and Manufacturing , 37(9), 1473-1479. http://dx.doi.org/10.1016/j.compositesa.2005.03.035.

21 Nascimento, D. C. O., Ferreira, A. S., Monteiro, S. N., Aquino, R. C. M. P., & Kestur, S. G. (2012). Studies on the characterization of piassava fibers and their epoxy composites. Composites. Part A, Applied Science and Manufacturing43(3), 353-362. http://dx.doi.org/10.1016/j.compositesa.2011.12.004. 

22 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Effects of chemical treatments on hemp fiber structure. Applied Surface Science276, 13-23. http://dx.doi.org/10.1016/j.apsusc.2013.02.086. 

23 Zimmermann, E. G. M., Turell, T. C., Zattera, A. J., & Santana, R. M. C. (2014). Influence of chemical treatment of banana fiber composite of poly (ethylene-co-vinyl acetate) with and without blowing agent. Journal of Polymer Science and Technology , 24(1), 58-64. http://dx.doi.org/10.4322/polimeros.2013.071. 

24 Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology61(7-8), 1437-1447. http://dx.doi.org/10.1016/S0266-3538(01)00046-X. 

25 Oudiani, A. E., Chaabouni, Y., Msahli, S., & Sakli, F. (2011). Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre . Carbohydrate Polymers86(3), 1221-1229. http://dx.doi.org/10.1016/j.carbpol.2011.06.037. 

26 Goswami, P., Blackburn, R. S., El-Dessouky, H. M., Taylor, J., & White, P. (2009). Effect of sodium hydroxide pre-treatment on the optical and structural properties of lyocell. European Polymer Journal45(2), 455-465. http://dx.doi.org/10.1016/j.eurpolymj.2008.10.030. 

27 Široký, J., Manian, A. P., Široká, B., Abu-Rous, M., Schlangen, J., Blackburn, R. S., & Bechtold, T. (2009). Alkali treatments of lyocell in continuous processes. I. Effects of temperature and alkali concentration on the treatments of plain woven fabrics. Journal of Applied Polymer Science, 113(6), 3646-3655. http://dx.doi.org/10.1002/app.30356. 

28 Singh, V., Tiwari, A., Tripathi, D. N., & Sanghi, R. (2004). Grafting of polyacrylonitrile onto guar gum under microwave irradiation. Journal of Applied Polymer Science , 92(3), 1569-1575. http://dx.doi.org/10.1002/app.20099. 

29 Vijay, K. K., Anil, K., & Susheel, K. (2012). Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. International Journal of Textile Science1(6), 101-105. http://dx.doi.org/10.5923/j.textile.20120106.07. 

30 Gonçalves, A. P. B., Miranda, C. S., Guimarães, D. H., Oliveira, J. C., Cruz, A. M. F., Silva, F. L. B. M., Luporini, S., & José, N. M. (2015). Physicochemical, mechanical and morphologic characterization of purple banana fibers. Materials Research18(2, Suppl 2), 205-209. http://dx.doi.org/10.1590/1516-1439.366414. 

31 Geethamma, V. G., Joseph, R., & Thomas, S. (1995). Short coir fibre reinforced natural rubber composites: effects of fibre length, orientation and alkali treatmant. Journal of Applied Polymer Science55(4), 583-594. http://dx.doi.org/10.1002/app.1995.070550405. 

5cb779720e88257909ce6ba5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections