Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings

Natanael Relosi; Oscar Almeida Neuwald; Ademir José Zattera; Diego Piazza; Sandra Raquel Kunst; Eliena Jonko Birriel

Downloads: 1
Views: 1176


Abstract: Powder coatings have been used for coating metal substrates in industrial applications. The incorporation of nanofillers as muscovite mica and montmorillonite (MMT) can improve the properties of the coatings. The objective of this study is to develop, apply and characterize a hybrid powder coating (30% epoxy/70% polyester) adding nanofillers in concentrations of 2, 4 and 6 phr separately in a twin screw extruder. The characterization of the coatings was performed by thermal, mechanical and chemical analysis. The incorporation of clay into the polymer increased the surface roughness resulting in a diffuse reflection of incident light and on a gloss reduction. The muscovite mica presented a lamellar structure, constituted by a set of overlapping parallel plates. The morphology analysis showed that the MMT presented irregular agglomerates resulting in inferior mechanical properties to coatings with muscovite mica. In the salt spray test, all samples showed high corrosion protection, around 850 hours.


epoxy/polyester resin, montmorillonite, muscovite mica, powder coating


Fazenda, J. M. R. (2009). Tintas: ciência e tecnologia. São Paulo: Blucher.

Mariz, I. F. A., Millichamp, I. S., Cal, J. C., & Leiza, J. R. (2010). High performance water-borne paints with high volume solids based on bimodal latexes. Progress in Organic Coatings , 68(3), 225-233. http://dx.doi.org/10.1016/j.porgcoat.2010.01.008.

Kukackova, H., Vrastilová, A., & Kalendova, A. (2013). Non-toxic anticorrosive pigments intended for applications in high-solids and waterborne paints. Physics Procedia, 44, 238-246. http://dx.doi.org/10.1016/j.phpro.2013.04.029.

Camargo, M. (2002). Resinas poliésteres carboxifuncionais para tinta em pó: caracterização e estudo cinético da reação de cura (Tese de doutorado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Gentil, V. (2011). Corrosão. Rio de Janeiro: LTC.

Mafi, R., Mirabedini, S. M., Naderi, R., & Attar, M. M. (2008). Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings. Corrosion Science, 50(12), 3280-3286. http://dx.doi.org/10.1016/j.corsci.2008.08.037.

Rabello, M. (2011). Aditivação de polímeros . São Paulo: Artliber.

Tomic, M. D., Dunjic, B., Likic, V., Bajat, J., Rogan, J., & Djonlagic, J. (2014). The use of nanoclay in preparation of epoxy anticorrosive coatings. Progress in Organic Coatings, 77(2), 518-527. http://dx.doi.org/10.1016/j.porgcoat.2013.11.017.

Liu, B., & Wang, Y. (2014). A novel design for water-based modified epoxy coating with anti-corrosive application properties. Progress in Organic Coatings , 77(1), 219-224. http://dx.doi.org/10.1016/j.porgcoat.2013.09.007.

Piazza, D., Silveira, D. S., Lorandi, N. P., Birriel, E. J., Scienza, L. C., & Zattera, A. J. (2012). Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel. Progress in Organic Coatings, 73(1), 42-46. http://dx.doi.org/10.1016/j.porgcoat.2011.08.018.

Waschburger, M. R. (2006). Compósito de propileno com nanocarga (Dissertação de mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

Chen, C., Khobaib, M., & Curliss, D. (2003). Epoxy layered-silicate nanocomposites. Progress in Organic Coatings, 47(3-4), 376-383. http://dx.doi.org/10.1016/S0300-9440(03)00130-9.

Sebenik, G., Huskic, M., Vengust, D., & Zigon, M. (2015). Properties of epoxy and unsaturated polyester nanocomposites with polycation modified montmorillonites. Applied Clay Science, 109–110, 143-150. http://dx.doi.org/10.1016/j.clay.2015.03.004.

Bongiovanni, R., Turcato, E. A., Di Gianni, A., & Ronchetti, S. (2008). Epoxy coatings containing clays and organoclays: Effect of the filler and its water content on the UV-curing process. Progress in Organic Coatings, 62(3), 336-343. http://dx.doi.org/10.1016/j.porgcoat.2008.01.014.

Hang, T.T.X., Truc, T. A., Nam, T. H., Oanh, V. K., Jorcin, J.-B., & Pébère, N. (2007). Corrosion protection of carbon steel by an epoxy resin containing organically modified clay. Surface and Coatings Technology, 201(16-17), 7408-7415. http://dx.doi.org/10.1016/j.surfcoat.2007.02.009.

Hussain, F., Chen, J., & Hojjati, M. (2007). Epoxy-silicate nanocomposites: cure monitoring and characterization. Materials Science and Engineering A, 445-446, 467-476. http://dx.doi.org/10.1016/j.msea.2006.09.071.

Salahuddin, N., Moet, A., Hiltner, A., & Baer, E. (2002). Nanoscale highly filled epoxy nanocomposite. European Polymer Journal, 38(7), 1477-1482. http://dx.doi.org/10.1016/S0014-3057(02)00015-0.

Carrasco, F., & Pagés, P. (2008). Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polymer Degradation & Stability, 93(5), 1000-1007. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.018.

José, N. M., & Prado, L. A. S. A. (2005). Materiais Híbridos Orgânico-Inorgânicos: Preparação e Algumas Aplicações. Quimica Nova , 28(2), 281-288. http://dx.doi.org/10.1590/S0100-40422005000200020.

ASTM – American Society for Testing and Materials. (2010). ASTM D7378: standard practice for measurement of thicknen of applied coating powders to predict cured thickness . West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (2005). ASTM D3363: standard test method for film hardness by pencil test (Reapproved 2011). West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (2009). ASTM D 3359: standard test methods for measuring adhesion by tape test. West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (2008). ASTM D 523: standard test method for specular gloss. West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (1993). ASTM D522: standard test methods for mandrel bend test of attached organic coatings (Reapproved 2008). West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (1993). ASTM D2794: standard test method for resistance of organic coatings to the effects of rapid deformation (impact) (Reapproved 2010). West Conshohocken: ASTM.

ASTM – American Society for Testing and Materials. (2007). ASTM B117: standard practice for operating salt spray (fog) apparatus. West Conshohocken: ASTM.

Paiva, L. B., Morales, A. R., & Díaz, F. R. V. (2008). Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica , 54(330), 213-226. http://dx.doi.org/10.1590/S0366-69132008000200012.

Hull, T. R., Witkowski, A., & Hollingbery, L. (2011). Fire retardant action of mineral fillers. Polymer Degradation & Stability, 96(8), 1462-1469. http://dx.doi.org/10.1016/j.polymdegradstab.2011.05.006.

Sirelli, L. (2008). Compósitos de poli(tereftalato de etileno) e mica muscovita: preparação, caracterização e propriedades (Tese de doutorado). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Lakshmi, M. S., Narmadha, B., & Reddy, B. S. R. (2008). Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polymer Degradation & Stability, 93(1), 201-213. http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.005.

Bharadwaj, R. K., Mehrabi, A. R., Hamilton, C., Trujillo, C., Murga, M., Fan, R., Chavira, A., & Thompson, A. K. (2002). Structure property relationships in cross-linked polyester–clay nanocomposites. Polymers, 43(13), 3699-3705. http://dx.doi.org/10.1016/S0032-3861(02)00187-8.

Oliveira Júnior, A. R. (2006). Obtenção de nanocompósitos polipropileno-argila compatibilizados com organossilanos (Tese de doutorado). Universidade Estadual de Campinas, Campinas.

Ollier, R., Rodriguez, E., & Alvarez, V. (2013). Unsaturated polyester/bentonite nanocomposites: Influence of clay modification on final performance. Composites. Part A, Applied Science and Manufacturing, 48, 137-143. http://dx.doi.org/10.1016/j.compositesa.2013.01.005.

Kim, S., & Wilkie, C. A. (2008). Transparent and flame retardant PMMA nanocomposites. Polymers for Advanced Technologies, 19(6), 496-506. http://dx.doi.org/10.1002/pat.1089.

Mansoori, Y., Akhtarparast, A., Zamanloo, M. R., Imanzadeh, G., & Masooleh, T. M. (2011). Polymer-montmorillonite nanocomposites: Chemical grafting of polyvinyl acetate onto Cloisite 20A. Polymer Composites, 46(8), 1844-1853.

Gu, A., & Liang, G. (2003). Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polymer Degradation & Stability, 80(2), 383-391. http://dx.doi.org/10.1016/S0141-3910(03)00026-0.

Kalenda, P., Kalendová, A., Stengl, V., Antos, P., Subrt, J., Kvaca, Z., & Bakardjieva, S. (2004). Properties of surface-treated mica in anticorrosive coatings. Progress in Organic Coatings, 49(2), 137-145. http://dx.doi.org/10.1016/j.porgcoat.2003.09.003.

Le, S., Sun, K., Zhang, N., Shao, Y., An, M., Fu, Q., & Zhu, X. (2007). Comparison of infiltrated ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells. Journal of Power Sources, 168(2), 447-452. http://dx.doi.org/10.1016/j.jpowsour.2007.03.014.

Moate, B. D., & Thorne, P. D. (2012). Interpreting acoustic backscatter from suspended sediments of different and mixed mineralogical composition. Continental Shelf Research, 46, 67-82. http://dx.doi.org/10.1016/j.csr.2011.10.007.

Gacitua, E. W., Ballerini, A. A., & Zhang, J. (2005). Polymer nanocomposites: synthetic and natural fillers. Maderas. Ciencia y Tecnología, 7(3), 159-178.

Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal, 41(4), 645-662. http://dx.doi.org/10.1016/j.eurpolymj.2004.10.035.

Wang, Z., Han, E., & Ke, W. (2006). Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surface and Coatings Technology , 200(20-21), 5706-5716. http://dx.doi.org/10.1016/j.surfcoat.2005.08.102.

Reichert, P., Nitz, H., Klinke, S., Brandsch, R., Thomann, R., & Mulhaupt, R. (2000). Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromolecular Materials and Engineering , 275(1), 8-17. http://dx.doi.org/10.1002/(SICI)1439-2054(20000201)275:1<8::AID-MAME8>3.0.CO;2-6.

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science , 363(1), 1-24. http://dx.doi.org/10.1016/j.jcis.2011.07.017. PMid:21824625.

Hetzer, M., & Kee, D. (2008). Wood/polymer/nanoclay composites, environmentally friendly sustainable technology: a review. Chemical Engineering Research & Design , 86(10), 1083-1093. http://dx.doi.org/10.1016/j.cherd.2008.05.003.

Zulfiqar, S., Kausar, A., Rizwan, M., & Sarwar, M. I. (2008). Probing the role of surface treated montmorillonite on the properties of semi-aromatic polyamide/clay nanocomposites. Applied Surface Science, 225(5), 2080-2086. http://dx.doi.org/10.1016/j.apsusc.2008.06.184.

Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: nanocomposites. Polymer, 49(15), 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017.

Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008.

Paiva, L. B., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: properties, preparation and applications. Applied Clay Science, 42(1-2), 8-24. http://dx.doi.org/10.1016/j.clay.2008.02.006.

Bikiaris, D. (2011). Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochimica Acta, 523(1-2), 25-45. http://dx.doi.org/10.1016/j.tca.2011.06.012.

Huskic, M., Zigon, M., & Ivankovic, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109-115. http://dx.doi.org/10.1016/j.clay.2013.09.004.

Lee, W.-F., & Chen, Y.-C. (2005). Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents. European Polymer Journal , 41(7), 1605-1612. http://dx.doi.org/10.1016/j.eurpolymj.2005.02.011.

Rashid, E. S. A., Rasyid, M. F. A., Akil, H. M. D., Ariffin, K., & Kooi, C. C. (2011). Effect of ion exchange treatment on the properties of muscovite filled epoxy composite. Applied Clay Science, 52(3), 295-300. http://dx.doi.org/10.1016/j.clay.2011.03.008.

Choi, J., Komarneni, S., Grover, K., Katsuki, H., & Park, M. (2009). Hydrothermal synthesis of Mn-mica. Applied Clay Science, 46(1), 69-72. http://dx.doi.org/10.1016/j.clay.2009.07.014.

Mirabedini, S. M., & Kiamanesh, A. (2013). The effect of micro and nano-sized particles on mechanical and adhesion properties of clear polyester powder coating. Progress in Organic Coatings, 76(11), 1625-1632. http://dx.doi.org/10.1016/j.porgcoat.2013.07.009.

Lv, S., Zhou, W. Z., Li, S., & Shi, W. (2008). A novel method for preparation of exfoliated UV curable polymer/clay nanocomposites. European Polymer Journal, 44(6), 1613-1619. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.005.

Piazza, D., Lorandi, N. P., Pasqual, C. I., Scienza, L. C., & Zattera, A. J. (2011). Influence of a microcomposite and a nanocomposite on the properties of an epoxy-bases powder coating. Materials Science and Engineering A, 528(22-23), 6769-6775. http://dx.doi.org/10.1016/j.msea.2011.05.062.

Bagherzadeh, M. R., & Mahdavi, F. (2007). Preparation of epoxy-clay nanocomposites andinvestigation on its anti-corrosive behavior in epoxy coating. Progress in Organic Coatings, 60(2), 117-120. http://dx.doi.org/10.1016/j.porgcoat.2007.07.011.

Navarchian, A. H., Joulazadeh, M., & Karimi, F. (2014). Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progress in Organic Coatings, 77(2), 347-353. http://dx.doi.org/10.1016/j.porgcoat.2013.10.008.

García, S. J., Serra, A., & Suay, J. (2007). New powder coatings with low curing temperature and enhanced mechanical properties obtained from DGEBA epoxy resins and meldrum acid using erbium triflate as curing agent. Journal of Polymer Science. Part A, Polymer Chemistry, 45(11), 2316-2327. http://dx.doi.org/10.1002/pola.21998.

Bertuoli, P. T. (2014). Desenvolvimento e caracterização de uma tinta em pó base poliéster contendo montmorilonita funcionalizada com silano (Dissertação de mestrado). Universidade de Caxias do Sul, Caxias do Sul.

Wicks Júnior, W. Z. W., Jones, F. N., Pappas, S. P., & Wicks, D. A. (2007). Organic coatings: science and technology. New Jersey: John Wiley & Sons.

Dong, Y., Chaudhary, D., Ploumis, C., & Lau, K. T. (2011). Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Composites. Part A, Applied Science and Manufacturing, 42(10), 1483-1492. http://dx.doi.org/10.1016/j.compositesa.2011.06.015.

Akbari, B., & Bagheri, R. (2007). Deformation mechanism of epoxy/clay nanocomposite. European Polymer Journal, 43(3), 782-788. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.028.

Choudalakis, G., & Gotsis, A. D. (2009). Permeability of polymer/clay nanocomposites: A review. European Polymer Journal, 45(4), 967-984. http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027.

5bb66a160e8825ea61bd3c08 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections