Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Conference Paper

Cashew nut shell liquid, a valuable raw material for generating semiconductive polyaniline nanofibers

Raiane Valenti Gonçalves; Mara Lise Zanini; José Antonio Malmonge; Leila Bonnaud; Nara Regina de Souza Basso

Downloads: 1
Views: 1001


Abstract: Cashew nut shell liquid (CNSL) is an abundant and renewable by-product of the cashew nut industry. It appears to be a valuable raw material for generating semiconductive polyaniline (PAni) nanomaterial with enhanced thermal stability and well-defined nanofiber morphology following a polymerization dispersion process. This study confirms that CNSL acts as a soft template during PAni synthesis, leading to an improvement in the nanofiber aspect. CNSL also improves the thermal stability of the PAni nanomaterial. Moreover, CNSL is an effective surfactant that promotes and stabilizes the dispersion of PAni nanofibers within water, allowing the more ecofriendly preparation of PAni nanomaterial by substituting the commonly used organic solvent with aqueous media. Finally, although CNSL promotes the formation of the conductive emeraldine salt form of PAni, increasing CNSL concentrations appear to plasticize the PAni polymer, leading to reduced electrical conductivity. However, this reduction is not detrimental, and PAni nanofibers remain semiconductive even under high CNSL concentrations.


cashew nut shell liquid, nanofibers, polyaniline, semiconductive material, soft template


Simões, F. R., Bulhões, L. O. S., & Pereira, E. C. (2009). Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability. Polímeros: Ciência e Tecnologia, 19(1), 54-57. http://dx.doi.org/10.1590/S0104-14282009000100013.

Hacıvelioğlu, F., Kılıç, N., Çelebi, E. B., & Yeşilot, S. (2016). In situ preparation and properties of sulfonic and phosphonic acid substituted polyphosphazene/polyaniline composites. Polymer , 96, 112-120. http://dx.doi.org/10.1016/j.polymer.2016.05.008.

Wang, C., Wang, L., Jin, J., Liu, J., Li, Y., Wu, M., Chen, L., Wang, B., Yang, X., & Su, B. (2016). Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Applied Catalysis B: Environmental, 188, 351-359. http://dx.doi.org/10.1016/j.apcatb.2016.02.017.

Gu, Z., Zhang, Q., & Shen, Q. (2015). Synthesis and comparison of polyaniline nanofibers templated by α-, β- and γ-cyclodextrin. Journal of Polymer Research, 2015(22), 7. http://dx.doi.org/10.1007/s10965-014-0647-5.

Summers, G. J., Waware, U. S., Maduwa, M. R., & Summers, C. A. (2015). Conducting polyaniline nanorods doped with aromatic carboxyl chain end functionalized polystyrene. Synthetic Metals, 209, 251-261. http://dx.doi.org/10.1016/j.synthmet.2015.07.026.

Chutia, P., & Kumar, A. (2015). Electrical transport and morphological studies of polyaniline nanostructures. Polymer Engineering and Science, 55(5), 995-1002. http://dx.doi.org/10.1002/pen.23967.

Chen, X., Li, H., Wu, H., Wu, Y., Shang, Y., Pan, J., & Xiong, X. (2016). Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light. Materials Letters, 172, 52-55. http://dx.doi.org/10.1016/j.matlet.2016.02.134.

Han, J., Song, G., & Guo, R. (2007). Nanostructure-Based Leaf-like Polyaniline in the Presence of an Amphiphilic Triblock Copolymer. Advanced Materials, 19(19), 2993-2999. http://dx.doi.org/10.1002/adma.200602635.

Yang, N., Zhai, J., Wan, M., Wang, D., & Jiang, L. (2010). Layered nanostructures of polyaniline with graphene oxide as the dopant and template. Synthetic Metals, 160(15-16), 1617-1622. http://dx.doi.org/10.1016/j.synthmet.2010.05.029.

Dallas, P., & Georgakilas, V. (2015). Interfacial polymerization of conductive polymers: generation of polymeric nanostructures in a 2-D space. Advances in Colloid and Interface Science, 224, 46-61. PMid:26272721. http://dx.doi.org/10.1016/j.cis.2015.07.008.

Yin, H., & Yang, J. (2011). Synthesis of high-performance one-dimensional polyaniline nanostructures using dodecylbenzene sulfonic acid as soft template. Materials Letters, 65(5), 850-853. http://dx.doi.org/10.1016/j.matlet.2010.12.031.

Sinha, S., Bhadra, S., & Khastgir, D. (2009). Effect of dopant type on the properties of polyaniline. Journal of Applied Polymer Science, 112(5), 3135-3140. http://dx.doi.org/10.1002/app.29708.

Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1-47. http://dx.doi.org/10.1016/j.synthmet.2013.06.004.

Pahovnik, D., Žagar, E., Kogej, K., Vohlídal, J., & Žigon, M. (2013). Polyaniline nanostructures prepared in acidic aqueous solutions of ionic liquids acting as soft templates. European Polymer Journal, 49(6), 1381-1390. http://dx.doi.org/10.1016/j.eurpolymj.2013.02.019.

Wang, Y., Chen, K., Li, T., Li, H., Zeng, R., Zhang, R., Gu, Y., Ding, J., & Liu, H. (2014). Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization. Synthetic Metals, 198, 293-299. http://dx.doi.org/10.1016/j.synthmet.2014.10.038.

Zhang, Z., Wei, Z., & Wan, M. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35(15), 5937-5942. http://dx.doi.org/10.1021/ma020199v.

Zhang, Z., Wei, Z., Zhang, L., & Wan, M. (2005). Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Materialia, 53(5), 1373-1379. http://dx.doi.org/10.1016/j.actamat.2004.11.030.

Anilkumar, P., & Jayakannan, M. (2007). Fluorescent tagged probing agent and structure-directing amphiphilic molecular design for polyaniline nanomaterials via self-assembly process. The Journal of Physical Chemistry C, 111(9), 3591-3600. http://dx.doi.org/10.1021/jp066428n.

Jang, J., Bae, J., & Lee, K. (2005). Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer, 46(11), 3677-3684. http://dx.doi.org/10.1016/j.polymer.2005.03.030.

Ayad, M. M., Salahuddin, N. A., Minisy, I. M., & Amer, W. A. (2014). Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sensors and Actuators. B, Chemical, 202, 144-153. http://dx.doi.org/10.1016/j.snb.2014.05.046.

Qiu, H., Qi, S., Wang, D., Wang, J., & Wu, X. (2010). Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synthetic Metals, 160(11-12), 1179-1183. http://dx.doi.org/10.1016/j.synthmet.2010.03.005.

Grover, S., Goel, S., Marichi, R. B., Sahu, V., Singh, G., & Sharma, R. K. (2016). Polyaniline all solid-state pseudocapacitor: role of morphological variations in performance evolution. Electrochimica Acta, 196, 131-139. http://dx.doi.org/10.1016/j.electacta.2016.02.157.

Lochab, B., Shukla, S., & Varma, I. K. (2014). Naturally occurring phenolic sources: monomers and polymers. RSC Advances, 4(42), 21712-21752. http://dx.doi.org/10.1039/C4RA00181H.

Voirin, C., Caillol, S., Sadavarte, N. V., Tawade, B. V., Boutevin, B., & Wadgaonkar, P. P. (2014). Functionalization of cardanol: towards biobased polymers and additives. Polymer Chemistry, 5(9), 3142-3162. http://dx.doi.org/10.1039/C3PY01194A.

Balachandran, V. S., Jadhav, S. R., Vemula, P. K., & John, G. (2013). Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chemical Society Reviews, 42(2), 427-438. PMid:23114456. http://dx.doi.org/10.1039/C2CS35344J.

Souza, F. G. Jr, Pinto, J. C., Oliveira, G. E., & Soares, B. G. (2007). Evaluation of electrical properties of SBS/Pani blends plasticized with DOP and CNSL using an empirical statistical model. Polymer Testing, 26(6), 720-728. http://dx.doi.org/10.1016/j.polymertesting.2007.03.004.

Anilkumar, P., & Jayakannan, M. (2009). Self-assembled cylindrical and vesicular molecular templates for polyaniline nanofibers and nanotapes. The Journal of Physical Chemistry B, 113(34), 11614-11624. PMid:19642663. http://dx.doi.org/10.1021/jp9043418.

Srivastava, R., & Srivastava, D. (2015). Mechanical, chemical, and curing characteristics of cardanol–furfural-based novolac resin for application in green coatings. Journal of Coatings Technology and Research, 12(2), 303-311. http://dx.doi.org/10.1007/s11998-014-9630-7.

Gonçalves, R. V., Zanini, M. L., Malmonge, J. A., Bonnaud, L., & Basso, N. R. S. (2016). Pristine cardanol as biobased dopant for polyaniline. Materials Letters , 185, 327-330. http://dx.doi.org/10.1016/j.matlet.2016.07.138.

Basso, N. R. S., Oliveira, F., Graebin, A. P., Moura, C. S., Fim, F. C., Galland, G. B., Bonnaud, L., Murariu, O., & Dubois, P. (2014). Polyaniline nanofibers for In situ MAO-catalyzed polymerization of ethylene. Journal of Applied Polymer Science, 131, 41197.

Li, Y., Li, G., Peng, H., Qin, Y., & Chen, K. (2013). Facile synthesis of high-quality ultralong poly(aniline-co-p-phenylenediamine) nanofibers. Synthetic Metals , 164, 42-46. http://dx.doi.org/10.1016/j.synthmet.2012.12.024.

Silva, M. J., Sanches, A. O., Malmonge, L. F., Medeiros, E. S., Rosa, M. F., McMahan, C. M., & Malmonge, J. A. (2012). Conductive nanocomposites based on cellulose nanofibrils coated with polyaniline-dbsa via in situ polymerization. Macromolecular Symposia , 319(1), 196-202. http://dx.doi.org/10.1002/masy.201100156.

Xia, H., & Wang, Q. (2001). Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. Journal of Nanoparticle Research, 3(5/6), 401-411. http://dx.doi.org/10.1023/A:1012564814745.

Han, M. G., Cho, S. K., Oh, S. G., & Im, S. S. (2002). Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synthetic Metals, 126(1), 53-60. http://dx.doi.org/10.1016/S0379-6779(01)00494-5.

Stejskal, J., Kratochvíl, P., & Radhakrishnan, N. (1993). Polyaniline dispersions 2. UV-Vis absorption spectra. Synthetic Metals, 61(3), 225-231. http://dx.doi.org/10.1016/0379-6779(93)91266-5.

Han, Y. G., Kusunose, T., & Sekino, T. (2009). One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles. Synthetic Metals , 159(1-2), 123-131. http://dx.doi.org/10.1016/j.synthmet.2008.08.011.

Neelgund, G. M., Bliznyuk, V. N., & Oki, A. (2016). Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method. Applied Catalysis B: Environmental, 187, 357-366. PMid:26917864. http://dx.doi.org/10.1016/j.apcatb.2016.01.009.

Yan, Q., Wang, M., Wu, Y., & Shen, Q. (2016). Tea polyphenol as environmentally friendly dopant and thermal stabilizer for polyaniline. Materials Letters, 170, 202-204. http://dx.doi.org/10.1016/j.matlet.2016.02.041.

Oliveira, L. R., Manzato, L., Mascarenhas, Y. P., & Sanches, E. A. (2017). The influence of heat treatment on the semi-crystalline structure of polyaniline Emeraldine-salt form. Journal of Molecular Structure, 1128, 707-717. http://dx.doi.org/10.1016/j.molstruc.2016.09.044.

Sanches, E. A., Soares, J. C., Mafud, A. C., Fernandes, E. G. R., Leite, F. L., & Mascarenhas, Y. P. (2013). Structural characterization of Chloride Salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. Journal of Molecular Structure, 1036, 121-126. http://dx.doi.org/10.1016/j.molstruc.2012.09.084.

Bhadra, S., & Khastgir, D. (2009). Glass–rubber transition temperature of polyaniline: experimental and molecular dynamic simulation. Synthetic Metals, 159(12), 1141-1146. http://dx.doi.org/10.1016/j.synthmet.2009.01.052.

Zhao, W., Ma, L., & Lu, K. (2007). Facile synthesis of polyaniline nanofibers in the presence of polyethylene glycol. Journal of Polymer Research, 14(1), 1-4. http://dx.doi.org/10.1007/s10965-006-9069-3.

Sen, T., Mishra, S., & Shimpi, N. G. (2017). A b-cyclodextrin based binary dopant for polyaniline: structural, thermal, electrical, and sensing performance. Materials Science and Engineering B, 220, 13-21. http://dx.doi.org/10.1016/j.mseb.2017.03.003.

Yan, J., Huang, Y., Wei, C., Zhang, N., & Liu, P. (2017). Covalently bonded polyaniline/graphene composites as highperformance electromagnetic (EM) wave absorption materials. Composites. Part A, Applied Science and Manufacturing, 99, 121-128. http://dx.doi.org/10.1016/j.compositesa.2017.04.016.

Bhadra, S., & Khastgir, D. (2008). Extrinsic and intrinsic structural change during heat treatment of polyaniline. Polymer Degradation & Stability , 93(6), 1094-1099. http://dx.doi.org/10.1016/j.polymdegradstab.2008.03.013.

Nobrega, M. M., Izumi, C. M. S., & Temperini, M. L. A. (2015). Probing molecular ordering in the HCl-doped polyaniline with bulk and nanofiber morphology by their thermal behavior. Polymer Degradation & Stability, 113, 66-71. http://dx.doi.org/10.1016/j.polymdegradstab.2015.01.015.

Ležaić, A. J., Bajuk-Bogdanović, D., Radoičić, M., Mirsky, V. M., & Ćirić-Marjanović, G. (2016). Influence of synthetic conditions on the structure and electrical properties of nanofibrous polyanilines and their nanofibrous carbonized forms. Synthetic Metals, 214, 35-44. http://dx.doi.org/10.1016/j.synthmet.2016.01.015.

Krukiewicz, K., & Katunin, A. (2016). The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid. Synthetic Metals , 214, 45-49. http://dx.doi.org/10.1016/j.synthmet.2016.01.017.

Huang, J., & Kaner, R. B. (2004). A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society, 126(3), 851-855. PMid:14733560. http://dx.doi.org/10.1021/ja0371754.

5b7c4c440e88256e52896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections