Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.01416
Polímeros: Ciência e Tecnologia
Original Article

Obtaining and characterizing dental hybrid composites with clay or silica nanoparticles and boron-aluminum-silicate glass microparticles

Menezes, Lívia Rodrigues de; Silva, Emerson Oliveira da

Downloads: 0
Views: 148

Abstract

The aim of the present work was the obtaining and characterization of dental hybrid composites using nanoparticles (clay or silica) and boron-aluminum-silicate microparticles. We evaluated the dispersion of the nanofillers when changing their loading among 2.5%, 5%, 10% and 25% wt. Were tested, in the above quantities, four different types of nanofillers, two nanosilicas and two nanoclays The remainder of the inorganic phase, up to a total loading of 75% wt, was given by the boron-aluminum-silicate microparticles. The systems were characterized by XRD, TGA, LF-NMR, and . FTIR was used to determine the degree of conversion. The XRD and LF-NMR showed that the composites with 2.5% of clays, contained an exfoliated profile, and the groups with higher amounts of clay showed intercalated areas or the agglomeration of these particles. Furthermore, the silicas were agglomerated in all groups. The thermal resistance of the material was not affected by the silicas, but improved when using 2.5% of nanoclays. On the other hand, the addition of these particles caused the reduction of the degree of conversion of the systems.

Keywords

acrylate matrixes; hybrid composites; organoclays; silicas.

References

1 Ferracane, J. L. (2011). Resin composite-state of the art. Dental Materials27(1), 29-38. http://dx.doi.org/10.1016/j.dental.2010.10.020. PMid:21093034. 

2 Chen, M. H. (2010). Update on dental nanocomposites. Journal of Dental Research89(6), 549-560. http://dx.doi.org/10.1177/0022034510363765. PMid:20299523.

3 Hosseinalipour, M., Javadpour, J., Rezaie, H., Dadras, T., & Hayati, A. N. (2010). Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. Journal of Prosthodontics19(2), 112-117. http://dx.doi.org/10.1111/j.1532-849X.2009.00530.x. PMid:19895426. 

4 Uskoković, V., & Bertassoni, L. E. (2010). Nanotechnology in dental sciences: moving towards a finer way of doing dentistry. Materials (Basel)3(3), 1674-1691. http://dx.doi.org/10.3390/ma3031674. PMid:27103959. 

5 Salerno, M., & Diaspro, A. (2015). Dentistry on the bridge to nanoscience and nanotechnology. Frontiers in Materials2, 19. http://dx.doi.org/10.3389/fmats.2015.00019

6 Rastelli, A. N. S., Jacomassi, D. P., Faloni, A. P. S., Queiroz, T. P., Rojas, S. S., Bernardi, M. I. B., Bagnato, V. S., & Hernandes, A. C. (2012). The filler content of the dental composite resins and their influence on different properties. Microscopy Research and Technique75(6), 758-765. http://dx.doi.org/10.1002/jemt.21122. PMid:22213178. 

7 Marghalani, H. Y. (2010). Effect of filler particles on surface roughness of experimental composite series. Journal of Applied Oral Science18(1), 59-67. http://dx.doi.org/10.1590/S1678-77572010000100011. PMid:20379683. 

8 Uhm, Y. R., Kim, J., Lee, S., Jeon, J., & Rhee, C. K. (2011). In situ fabrication of surface modified lead monoxide nanopowder and its HDPE nanocomposite. Industrial & Engineering Chemistry Research50(8), 4478-4483. http://dx.doi.org/10.1021/ie102300x

9 Ermis, R. B., Yildirim, D., Yildiz, G., & Gormez, O. (2014). Radiopacity evaluation of contemporary resin composites by digitization of images. European Journal of Dentistry8(3), 342-347. http://dx.doi.org/10.4103/1305-7456.137644. PMid:25202214. 

10 Sinha Ray, S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science28(11), 1539-1641. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002

11 Ruiz-Hitzky, E., & Van Meerbeek, A. (2006). Clay mineral and organoclay–polymer nanocomposite. In F. Bergaya, B. K. G. Theng & G. Lagali (Eds.), Handbook of clay science, developments in clay science 1 (pp. 583-621). Amsterdam: Elsevier. http://dx.doi.org/10.1016/S1572-4352(05)01018-4

12 Paiva, L. D., Morales, A. R., & Díaz, F. R. V. (2008). Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica54(330), 213-226. http://dx.doi.org/10.1590/S0366-69132008000200012

13 Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., & Chung, T. C. (2001). Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials13(10), 3516-3523. http://dx.doi.org/10.1021/cm0110627

14 Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and use of a new class of materials. Materials Science and Engineering R Reports28(1-2), 61-68. http://dx.doi.org/10.1016/S0927-796X(00)00012-7

15 Hassel, A. J., Zenthöfer, A., Corcodel, N., Hildenbrandt, A., Reinelt, G., & Wiesberg, S. (2012). Determination of VITA classical shades with the 3D-Master shade guide. Acta Odontologica Scandinavica71(3-4), 721-726. http://dx.doi.org/10.3109/00016357.2012. PMid:23146130. 

16 Sadat-Shojai, M., Atai, M., Nodehi, A., & Khanlar, L. N. (2010). Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dental Materials26(5), 471-482. http://dx.doi.org/10.1016/j.dental.2010.01.005. PMid:20153516. 

17 Saif, M. J., & Asif, H. M. (2015). Escalating applications of halloysite nanotubes. Journal of the Chilean Chemical Society, 60(2), 2949-2953. http://dx.doi.org/10.4067/S0717-97072015000200019

18 Zhou, Q., & Xanthos, M. (2009). Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polymer Degradation & Stability94(3), 327-338. http://dx.doi.org/10.1016/j.polymdegradstab.2008.12.009

19 Feng, J., Hao, J., Du, J., & Yang, R. (2012). Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis (diphenyl phosphate) and montmorillonite. Polymer Degradation & Stability97(4), 605-614. http://dx.doi.org/10.1016/j.polymdegradstab.2012.01.011

20 Kashiwagi, T., Morgan, A. B., Antonucci, J. M., VanLandingham, M. R., Harris, R. H., Awad, W. H., & Shields, J. R. (2003). Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite. Journal of Applied Polymer Science89(8), 2072-2078. http://dx.doi.org/10.1002/app.12307.

21 Tian, Y., Yu, H., Wu, S., Ji, G., & Shen, J. (2004). Study the structure and properties of EVA/clay nanocomposites. Journal of Materials Science39(13), 4301-4303. http://dx.doi.org/10.1023/B:JMSC.0000033412.92494.ee

22 Tavares, M. I. B., Nogueira, R. F., Gil, R. A. S., Preto, M., Silva, E. O., Silva, M. B. R., & Miguez, E. (2007). Polypropylene–clay nanocomposite structure probed by H NMR relaxometry. Polymer Testing26(8), 1100-1102. http://dx.doi.org/10.1016/j.polymertesting.2007.07.012

23 Silva, M. A., Tavares, M. I. B., Nascimento, S. A., & Rodrigues, E. J. D. R. (2012). Caracterização de nanocompósitos de poliuretano/montmorilonita organofílica por RMN de baixo campo. Polímeros: Ciência e Tecnologia22(5), 481-485. http://dx.doi.org/10.1590/S0104-14282012005000064.

24 Passos, A. A., Tavares, M. I. B., Neto, R. C. P. & Ferreira. A. G. (2012). The use of solid state NMR TO evaluate EVA/silica films. Journal of Nano Research, 18-19, 219-226. http://dx.doi.org/10.4028/www.scientific.net/JNanoR.18-19.219.

25 Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2013). Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials29(2), 139-156. http://dx.doi.org/10.1016/j.dental.2012.11.005. PMid:23199807. 

26 Carreno, N. L. V., Oliveira, T. C. S., Piva, E., Leal, F. B., Lima, G. S., Monks, M. D., Raubach, C. W., & Ogliari, F. A. (2012). YbF 3 / SiO 2 Fillers as Radiopacifiers in a Dental Adhesive Resin. Nano-Micro Letters4(3), 189-196. http://dx.doi.org/10.1007/BF03353713

5e8d29ce0e8825d339c9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections