Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Thermal performance of nanoencapsulated phase change material in high molecular weight polystyrene

Tamara Agner; Amadeo Zimermann; Fabricio Machado; Brenno Amaro da Silveira Neto; Pedro Henrique Hermes de Araújo; Claudia Sayer

Downloads: 0
Views: 50


A novel nanoencapsulation of n-hexadecane in high molecular weight polystyrene nanoparticles for thermal energy storage was carried out by miniemulsion polymerization using an iron-containing imidazolium-based ionic liquid (IL) as catalyst. The particle size, morphology, molecular weight, and thermal performance of nanoparticles containing the phase change material (PCM) were measured by dynamic light scattering, transmission electron microscopy, gel permeation chromatography, and differential scanning calorimetry, respectively. The nanoparticles were regular spherical, with narrow size distribution and particle size ranged from 138 nm to 158 nm. The enthalpy of melting for the nanoencapsulated PCM increased from 19 J/g to 72 J/g, as the content of n-hexadecane used increased from 20 wt% to 50 wt%. In addition, the nanoparticles showed thermal reversibility after 100 thermal cycles. The high molecular weights of the polymer, up to 1800 kDa, that could be reached with this IL may have contributed positively to this thermal behavior.


cationic miniemulsion polymerization, ionic liquid, nanoencapsulation, phase change material


1 Su, W., Darkwa, J., & Kokogiannakis, G. (2015). Review of solid-liquid phase change materials and their encapsulation technologies. Renewable & Sustainable Energy Reviews, 48, 373-391. http://dx.doi.org/10.1016/j.rser.2015.04.044.

2 Fang, Y., Yu, H., Wan, W., Gao, X., & Zhang, Z. (2013). Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Conversion and Management, 76, 430-436. http://dx.doi.org/10.1016/j.enconman.2013.07.060.

3 Khadiran, T., Hussein, M. Z., Zainal, Z., & Rusli, R. (2015). Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78-98. http://dx.doi.org/10.1016/j.solmat.2015.06.039.

4 Rezvanpour, M., Hasanzadeh, M., Azizi, D., Rezvanpour, A., & Alizadeh, M. (2018). Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage. Materials Chemistry and Physics, 215, 299-304. http://dx.doi.org/10.1016/j.matchemphys.2018.05.044.

5 Landfester, K. (2003). Miniemulsions for nanoparticle synthesis. Topics in Current Chemistry, 227, 75-123. http://dx.doi.org/10.1007/3-540-36412-9_4.

6 Landfester, K. (2009). Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angewandte Chemie International Edition, 48(25), 4488-4507. http://dx.doi.org/10.1002/anie.200900723. PMid:19455531.

7 Ouzineb, K., Lord, C., Lesauze, N., Graillat, C., Tanguy, P. A., & McKenna, T. (2006). Homogenisation devices for the production of miniemulsions. Chemical Engineering Science, 61(9), 2994-3000. http://dx.doi.org/10.1016/j.ces.2005.10.065.

8 Tang, P. L., Sudol, E. D., Silebi, C. A., & El-Aasser, M. S. (1991). Miniemulsion polymerization - A comparative study of preparative variables. Journal of Applied Polymer Science, 43(6), 1059-1066. http://dx.doi.org/10.1002/app.1991.070430604.

9 Agner, T., Zimmermann, A., Di Luccio, M., Araújo, P. H. H., & Sayer, C. (2017). Monomer-in-water miniemulsions by membrane emulsification. Chemical Engineering and Processing - Process Intensification, 120, 251-257. http://dx.doi.org/10.1016/j.cep.2017.07.016.

10 do Amaral, M., & Asua, J. M. (2004). Synthesis of large, high-solid-content latexes by miniemulsion polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 42(17), 4222-4227. http://dx.doi.org/10.1002/pola.20287.

11 Farzi, G., Bourgeat-Lami, E., & McKenna, T. F. L. (2009). Miniemulsions using static mixers: A feasibility study using simple in-line static mixers. Journal of Applied Polymer Science, 114(6), 3875-3881. http://dx.doi.org/10.1002/app.30343.

12 Luo, Y., & Zhou, X. (2004). Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. Journal of Polymer Science. Part A, Polymer Chemistry, 42(9), 2145-2154. http://dx.doi.org/10.1002/pola.20065.

13 de Cortazar, M. G., & Rodríguez, R. (2013). Thermal storage nanocapsules by miniemulsion polymerization. Journal of Applied Polymer Science, 127(6), 5059-5064. http://dx.doi.org/10.1002/app.38124.

14 Fang, Y., Kuang, S., Gao, X., & Zhang, Z. (2008). Preparation and characterization of novel nanoencapsulated phase change materials. Energy Conversion and Management, 49(12), 3704-3707. http://dx.doi.org/10.1016/j.enconman.2008.06.027.

15 Fang, Y., Kuang, S., Gao, X., & Zhang, Z. (2009). Preparation of nanoencapsulated phase change material as latent functionally thermal fluid. Journal of Physics D: Applied Physics, 42(3), 035407. http://dx.doi.org/10.1088/0022-3727/42/3/035407.

16 Fang, Y., Liu, X., Liang, X., Liu, H., Gao, X., & Zhang, Z. (2014). Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Applied Energy, 132, 551-556. http://dx.doi.org/10.1016/j.apenergy.2014.06.056.

17 Fuensanta, M., Paiphansiri, U., Romero-Sánchez, M. D., Guillem, C., López-Buendía, Á. M., & Landfester, K. (2013). Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochimica Acta, 565, 95-101. http://dx.doi.org/10.1016/j.tca.2013.04.028.

18 Chen, Z.-H., Yu, F., Zeng, X.-R., & Zhang, Z.-G. (2012). Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy, 91(1), 7-12. http://dx.doi.org/10.1016/j.apenergy.2011.08.041.

19 Chen, C., Chen, Z., Zeng, X., Fang, X., & Zhang, Z. (2012). Fabrication and characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation. Colloid & Polymer Science, 290(4), 307-314. http://dx.doi.org/10.1007/s00396-011-2545-2.

20 Barrère, M., Ganachaud, F., Bendejacq, D., Dourges, M.-A., Maitre, C., & Hémery, P. (2001). Anionic polymerization of octamethylcyclotetrasiloxane in miniemulsion II. Molar mass analyses and mechanism scheme. Polymer, 42(17), 7239-7246. http://dx.doi.org/10.1016/S0032-3861(01)00207-5.

21 Barrère, M., Maitre, C., Dourges, M. A., & Hémery, P. (2001). Anionic polymerization of 1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane (F3) in miniemulsion. Macromolecules, 34(21), 7276-7280. http://dx.doi.org/10.1021/ma010559z.

22 Crespy, D., & Landfester, K. (2005). Anionic polymerization of ε-caprolactam in miniemulsion: Synthesis and characterization of polyamide-6 nanoparticles. Macromolecules, 38(16), 6882-6887. http://dx.doi.org/10.1021/ma050616e.

23 Cauvin, S., Sadoun, A., Santos, R., Belleney, J., Ganachaud, F., & Hemery, P. (2002). Cationic polymerization of p-methoxystyrene in miniemulsion. Macromolecules, 35(21), 7919-7927. http://dx.doi.org/10.1021/ma0202890.

24 Touchard, V., Graillat, C., Boisson, C., D’Agosto, F., & Spitz, R. (2004). Use of a Lewis acid surfactant combined catalyst in cationic polymerization in miniemulsion: Apparent and hidden initiators. Macromolecules, 37(9), 3136-3142. http://dx.doi.org/10.1021/ma0355352.

25 Cauvin, S., Ganachaud, F., Moreau, M., & Hémery, P. (2005). High molar mass polymers by cationic polymerisation in emulsion and miniemulsion. Chemical Communications, 1(21), 2713-2715. http://dx.doi.org/10.1039/b501489a. PMid:15917929.

26 Alves, R. C., Agner, T., Rodrigues, T. S., Machado, F., Neto, B. A. D., Costa, C., Araújo, P. H. H., & Sayer, C. (2018). Cationic miniemulsion polymerization of styrene mediated by imidazolium based ionic liquid. European Polymer Journal, 104, 51-56. http://dx.doi.org/10.1016/j.eurpolymj.2018.04.035.

27 Rodrigues, T. S., Machado, F., Lalli, P. M., Eberlin, M. N., & Neto, B. A. D. (2015). Styrene polymerization efficiently catalyzed by iron-containing imidazolium-based ionic liquids: Reaction mechanism and enhanced ionic liquid effect. Catalysis Communications, 63, 66-73. http://dx.doi.org/10.1016/j.catcom.2014.11.002.

28 Shirin-Abadi, A. R., Mahdavian, A. R., & Khoee, S. (2011). New approach for the elucidation of PCM nanocapsules through miniemulsion polymerization with an acrylic shell. Macromolecules, 44(18), 7405-7414. http://dx.doi.org/10.1021/ma201509d.

29 Tiarks, F., Landfester, K., & Antonietti, M. (2001). Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir, 17(3), 908-918. http://dx.doi.org/10.1021/la001276n.

5f6dee5c0e8825500d97b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections