Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Polysaccharides of red alga Gracilaria intermedia: structure, antioxidant activity and rheological behavior

Joana Paula Lima de Castro; Luís Eduardo Castanheira Costa; Maísa Pessoa Pinheiro; Thiago dos Santos Francisco; Pedro Hermano Menezes de Vasconcelos; Lizandra Mistrello Funari; Renata Moschini Daudt; Gustavo Ramalho Cardoso dos Santos; Nilo Sérgio Medeiros Cardozo; Ana Lúcia Ponte Freitas

Downloads: 0
Views: 1051


Abstract: A sulfated polysaccharide fraction from the red alga Gracilaria intermedia (PLS) was obtained by papain digestion (60 °C, 30 min). The extract was subjected to colorimetry and turbidimetry analysis, Fourier transform infrared (FTIR) spectroscopy, 1H, 13 C and 2D 1H COSY nuclear magnetic resonance (NMR) and gas chromatography/mass spectrometry analysis. Antioxidant activity tests were performed (chelation of ferrous ion, total antioxidant capacity, and scavenging of DPPH radicals); significant activity of the extract indicated that these polysaccharides may be used as non-synthetic antioxidants. The rheological behavior of aqueous polysaccharide solutions was studied at 25 ± 1 °C using steady-shear and dynamic oscillatory measurements. All the solutions analyzed showed pseudoplastic behavior and potential to act as a thickening agent, as proved through a preliminary comparison with a commercial product used for this application.


antioxidant activities, Gracilaria intermedia, polysaccharides, rheological behavior, structure


1 Bafana, A. (2013). Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydrate Polymers, 95(2), 746-752. PMid:23648037. http://dx.doi.org/10.1016/j.carbpol.2013.02.016.

2 Raza, W., Yang, W., Jun, Y., Shakoor, F., Huang, Q., & Shen, Q. (2012). Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity. Carbohydrate Polymers, 90(2), 921-929. PMid:22840021. http://dx.doi.org/10.1016/j.carbpol.2012.06.021.

3 Sutherland, I. W. (1999). Polysaccharases for microbial exopolysaccharides. Carbohydrate Polymers, 38(4), 319-328. http://dx.doi.org/10.1016/S0144-8617(98)00114-3.

4 Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456. http://dx.doi.org/10.1016/j.carbpol.2010.11.004.

5 Jiao, G., Yu, G., Zhang, J., & Ewart, S. H. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223. PMid:21566795. http://dx.doi.org/10.3390/md9020196.

6 Godard, M., Décordé, K., Ventura, E., Soteras, G., Baccou, J.-C., Cristol, J.-P., & Rouanet, J.-M. (2009). Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chemistry , 115(1), 176-180. http://dx.doi.org/10.1016/j.foodchem.2008.11.084.

7 Qi, H., Huang, L., Liu, X., Liu, D., Zhang, Q., & Liu, S. (2012). Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohydrate Polymers, 87(2), 1637-1640. http://dx.doi.org/10.1016/j.carbpol.2011.09.073.

8 Shao, P., Chen, M., Pei, Y., & Sun, P. (2013). In intro antioxidant activities of different sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. International Journal of Biological Macromolecules, 59, 295-300. PMid:23643973. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.048.

9 Souza, B. W. S., Cerqueira, M. A., Martins, J. T., Quintas, M. A. C., Ferreira, A. C. S., Teixeira, J. A., & Vicente, A. A. (2011). Antioxidant potential of two red seaweeds from the brazilian coasts. Journal of Agricultural and Food Chemistry, 59(10), 5589-5594. PMid:21491929. http://dx.doi.org/10.1021/jf200999n.

10 Domenek, S., Louaifi, A., Guinault, A., & Baumberger, S. (2013). Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. Journal of Polymers and the Environment, 21(3), 692-701. http://dx.doi.org/10.1007/s10924-013-0570-6.

11 Schreiber, S. B., Bozell, J. J., Hayes, D. G., & Zivanovic, S. (2013). Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocolloids, 33(2), 207-214. http://dx.doi.org/10.1016/j.foodhyd.2013.03.006.

12 Souza, B. W. S., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287-292. http://dx.doi.org/10.1016/j.foodhyd.2011.10.005.

13 Cheng, H., Feng, S., Shen, S., Zhang, L., Yang, R., Zhou, Y., & Ding, C. (2013). Extraction, antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide. Carbohydrate Polymers, 96(1), 101-108. PMid:23688459. http://dx.doi.org/10.1016/j.carbpol.2013.03.072.

14 Dore, C. M. P. G., Alves, M. G. C. F., Will, L. S. E. P., Costa, T. G., Sabry, D. A., Rêgo, L. A. R. S., Accardo, C. M., Rocha, H. A. O., Filgueira, L. G. A., & Leite, E. L. (2013). A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers , 91(1), 467-475. PMid:23044157. http://dx.doi.org/10.1016/j.carbpol.2012.07.075.

15 Liu, X., Sun, Z., Zhang, M., Meng, X., Xia, X., Yuan, W., Xue, F., & Liu, C. (2012). Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydrate Polymers, 90(4), 1664-1670. PMid:22944431. http://dx.doi.org/10.1016/j.carbpol.2012.07.047.

16 Wu, M., Wu, Y., Qu, M., Li, W., & Yan, X. (2013). Evaluation of antioxidant activities of water-soluble polysaccharides from brown alga Hizikia fusiformis. International Journal of Biological Macromolecules, 56, 28-33. PMid:23396065. http://dx.doi.org/10.1016/j.ijbiomac.2013.01.017.

17 Yang, X., Yang, S., Guo, Y., Jiao, Y., & Zhao, Y. (2013). Compositional characterisation of soluble apple polysaccharides, and their antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice. Food Chemistry, 138(2–3), 1256-1264. PMid:23411241. http://dx.doi.org/10.1016/j.foodchem.2012.10.030.

18 Zhang, Z., Wang, F., Wang, M., Ma, L., & Zeng, X. (2012). Extraction optimisation and antioxidant activities in vitro of polysaccharides from Allium macrostemon Bunge. International Journal of Food Science & Technology, 47(4), 723-730. http://dx.doi.org/10.1111/j.1365-2621.2011.02899.x.

19 Kumar, K. S., Ganesan, K., & Rao, P. V. S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty – An edible seaweed. Food Chemistry , 107(1), 289-295. http://dx.doi.org/10.1016/j.foodchem.2007.08.016.

20 Martín, L. A., Rodríguez, M. C., Matulewicz, M. C., Fissore, E. N., Gerschenson, L. N., & Leonardi, P. I. (2013). Seasonal variation in agar composition and properties from Gracilaria gracilis (Gracilariales, Rhodophyta) of the Patagonian coast of Argentina. Phycological Research, 61(3), 163-171. http://dx.doi.org/10.1111/pre.12000.

21 Niu, J., Xu, M., Wang, G., Zhang, K., & Peng, G. (2013). Comprehensive Extraction of Agar and R-Phycoerythrin from Gracilaria lemaneiformis (Bangiales, Rhodophyta). Indian Journal Geo-Marine Science, 42, 21-28.

22 Rodríguez-Montesinos, Y. E., Arvizu-Higuera, D. L., Hernández-Carmona, G., Muñoz-Ochoa, M., & Murillo-Álvarez, J. I. (2013). Seasonal variation of the agar quality and chemical composition of Gracilaria veleroae and Gracilaria vermiculophylla (Rhodophyceae, Gracilariaceae) from Baja California Sur, Mexico. Phycological Research, 61(2), 116-123. http://dx.doi.org/10.1111/pre.12008.

23 Maciel, J. S., Chaves, L. S., Souza, B. W. S., Teixeira, D. I. A., Freitas, A. L. P., Feitosa, J. P. A., & Paula, R. C. M. (2008). Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydrate Polymers, 71(4), 559-565. http://dx.doi.org/10.1016/j.carbpol.2007.06.026.

24 Lahaye, M., & Yaphe, W. (1988). Effects of seasons on the chemical structure and gel strength of Gracilaria pseudoverrucosa agar (Gracilariaceae, rhodophyta). Carbohydrate Polymers, 8(4), 285-301. http://dx.doi.org/10.1016/0144-8617(88)90067-7.

25 Araki, C. (1966). Some recent studies on the polysaccharides of agarophytes. In Proceedings of the Fifth International Seaweed Symposium (pp. 3-17). Halifax, Canada: Pergamon Press.

26 Barros, F. C. N., Silva, D. C., Sombra, V. G., Maciel, J. S., Feitosa, J. P. A., Freitas, A. L. P., & Paula, R. C. M. (2013). Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh). Carbohydrate Polymers , 92(1), 598-603. PMid:23218341. http://dx.doi.org/10.1016/j.carbpol.2012.09.009.

27 Vidotti, E. C., & Rollemberg, M. C. E. (2004). Algas: da economia nos ambientes aquáticos à bioremediação e à química analítica. Quimica Nova, 27(1), 139-145. http://dx.doi.org/10.1590/S0100-40422004000100024.

28 Coura, C. O., Araújo, I. W. F., Vanderlei, E. S. O., Rodrigues, J. A. G., Quinderé, A. L. G., Fontes, B. P., Queiroz, I. N. L., Menezes, D. B., Bezerra, M. M., Silva, A. A. R., Chaves, H. V., Jorge, R. J. B., Evangelista, J. S. A. M., & Benevides, N. M. B. (2012). Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the Red Seaweed Gracilaria cornea. Basic & Clinical Pharmacology & Toxicology, 110(4), 335-341. PMid:21985563. http://dx.doi.org/10.1111/j.1742-7843.2011.00811.x.

29 Solé, M., & Barrios, J. (2009). Catálogo de las macroalgas marinas del golfo de Paria y delta del Orinoco, Venezuela. Memoria de la Fundación La Salle de Ciencias Naturales, 171, 99-112.

30 Kim, M.-S., Yang, E. C., & Boo, S. M. (2006). Taxonomy and phylogeny of flattened species of Gracilaria (Gracilariceae, Rhodophyta) from Korea based on morphology and protein-coding plastid rbcL and psbA sequences. Phycologia, 45(5), 520-528. http://dx.doi.org/10.2216/05-38.1.

31 Gurgel, C. F. D., Fredericq, S., Norris, J. N., & Yoneshigue-Valentin, Y. (2008). Two New Flat Species of Gracilaria (Gracilariales, Rhodophyta) From Brazil: G. Abyssalis sp. nov. and G. Brasiliensis sp. nov. Phycologia, 47(3), 249-264. http://dx.doi.org/10.2216/PH06-59.1.

32 Lyra, M. G., Nunes, J. M. C., Jesus, P. B., Lázaro, J. L., & Assis, J. G. A. (2011). Aspectos ecológicos de Gracilaria Grev.(Gracilariales, Rhodophyta) em uma praia tropical brasileira. Revista Gestão Costeira Integrada, 11(4), 451-457. http://dx.doi.org/10.5894/rgci273.

33 Farias, W. R., Valente, A. P., Pereira, M. S., & Mourão, P. A. (2000). Structure and Anticoagulant Activity of Sulfated Galactans Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. The Journal of Biological Chemistry , 275(38), 29299-29307. PMid:10882718. http://dx.doi.org/10.1074/jbc.M002422200.

34 Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. The Biochemical Journal, 84(1), 106-110. PMid:13886865. http://dx.doi.org/10.1042/bj0840106.

35 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry , 28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017.

36 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry , 72(1), 248-254. PMid:942051. http://dx.doi.org/10.1016/0003-2697(76)90527-3.

37 Kircher, H. W. (1960). Gas-liquid partition chromatography of methylated sugars. Analytical Chemistry, 32(9), 1103-1106. http://dx.doi.org/10.1021/ac60165a016.

38 Lahaye, M., Yaphe, W., Viet, M. T. P., & Rochas, C. (1989). 13C-n.m.r. spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydrate Research, 190(2), 249-265. http://dx.doi.org/10.1016/0008-6215(89)84129-1.

39 Miller, I. J., & Furneaux, R. H. (1997). The Structural Determination of the Agaroid Polysaccharides from Four New Zealand Algae in the Order Ceramiales by Means of 13CNMR Spectroscopy. Botanica Marina, 40(1-6), 333-340. http://dx.doi.org/10.1515/botm.1997.40.1-6.333.

40 Usov, A. I., Yarotsky, S. V., & Shashkov, A. S. (1980). 13C-nmr spectroscopy of red algal galactans. Biopolymers, 19(5), 977-990. http://dx.doi.org/10.1002/bip.1980.360190504.

41 Valiente, O., Fernandez, L. E., Perez, R. M., Marquina, G., & Velez, H. (1992). Agar Polysaccharides from the Red Seaweeds Gracilaria domingensis Sonder ex Kützing and Gracilaria mammillaris (Montagne) Howe. Botanica Marina, 35(2), 77-82. http://dx.doi.org/10.1515/botm.1992.35.2.77.

42 Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. PMid:10222007. http://dx.doi.org/10.1006/abio.1999.4019.

43 Chun-hui, L., Chang-hai, W., Zhi-liang, X., & Yi, W. (2007). Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochemistry, 42(6), 961-970. http://dx.doi.org/10.1016/j.procbio.2007.03.004.

44 Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., & Li, Z. (2005). Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules , 37(4), 195-199. PMid:16310843. http://dx.doi.org/10.1016/j.ijbiomac.2005.10.008.

45 Zhang, Z., Wang, X., Zhang, J., & Zhao, M. (2011). Potential antioxidant activities in vitro of polysaccharides extracted from ginger (Zingiber officinale). Carbohydrate Polymers, 86(2), 448-452. http://dx.doi.org/10.1016/j.carbpol.2011.04.062.

46 Murugan, K., & Iyer, V. V. (2013). Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cellular & Developmental Biology. Animal, 49(5), 324-334. PMid:23645467. http://dx.doi.org/10.1007/s11626-013-9603-7.

47 Melo, M. R. S., Feitosa, J. P. A., Freitas, A. L. P., & Paula, R. C. M. (2002). Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers, 49(4), 491-498. http://dx.doi.org/10.1016/S0144-8617(02)00006-1.

48 Freile-Pelegrín, Y., & Robledo, D. (1997). Influence of alkali treatment on agar from Gracilaria cornea from Yucatán, México. Journal of Applied Phycology, 9(6), 533-539. http://dx.doi.org/10.1023/A:1007989931915.

49 Mehta, G. K., Meena, R., Prasad, K., Ganesan, M., & Siddhanta, A. K. (2010). Preparation of galactans from Gracilaria debilis and Gracilaria salicornia (Gracilariales, Rhodophyta) of Indian waters. Journal of Applied Phycology, 22(5), 623-627. http://dx.doi.org/10.1007/s10811-010-9502-1.

50 Amorim, R. N. S., Rodrigues, J. A. G., Holanda, M. L., Quinderé, A. L. G., Paula, R. C. M., Melo, V. M. M., & Benevides, N. M. B. (2012). Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Brazilian Archives of Biology and Technology, 55(2), 171-181. http://dx.doi.org/10.1590/S1516-89132012000200001.

51 Vanderlei, E. S. O., Araújo, I. W. F., Quinderé, A. L. G., Fontes, B. P., Eloy, Y. R. G., Rodrigues, J. A. G., Silva, A. A. R., Chaves, H. V., Jorge, R. J. B., Menezes, D. B., Evangelista, J. S. A. M., Bezerra, M. M., & Benevides, N. M. B. (2011). The involvement of the HO-1 pathway in the anti-inflammatory action of a sulfated polysaccharide isolated from the red seaweed Gracilaria birdiae. Inflammation Research, 60(12), 1121-1130. PMid:21879365. http://dx.doi.org/10.1007/s00011-011-0376-8.

52 Pomin, V. H., & Mourão, P. A. (2008). Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 18(12), 1016-1027. PMid:18796647. http://dx.doi.org/10.1093/glycob/cwn085.

53 Prado-Fernández, J., Rodríguez-Vázquez, J. A., Tojo, E., & Andrade, J. M. (2003). Quantitation of κ-, ι- and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Analytica Chimica Acta , 480(1), 23-37. http://dx.doi.org/10.1016/S0003-2670(02)01592-1.

54 Rochas, C., Lahaye, M., & Yaphe, W. (1986). Sulfate Content of Carrageenan and Agar Determined by Infrared Spectroscopy. Botanica Marina, 29(4), 335-340. http://dx.doi.org/10.1515/botm.1986.29.4.335.

55 Mollet, J.-C., Rahaoui, A., & Lemoine, Y. (1998). Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). Journal of Applied Phycology, 10(1), 59-66. http://dx.doi.org/10.1023/A:1008051528443.

56 Chopin, T., & Whalen, E. (1993). A new and rapid method for carrageenan identification by FT IR diffuse reflectance spectroscopy directly on dried, ground algal material. Carbohydrate Research, 246(1), 51-59. http://dx.doi.org/10.1016/0008-6215(93)84023-Y.

57 Parekh, R. G., Doshi, Y. A., Rao, V. D., & Chauhan, V. D. (1987). Studies on a phycocolloid from red alga Halymenia venusta Boergesen. Indian Journal of Geo-Marine Sciences , 16, 274-276.

58 Batista, J. A., Dias, E. G. N., Brito, T. V., Prudêncio, R. S., Silva, R. O., Ribeiro, R. A., Souza, M. H., Paula, R. C., Feitosa, J. P., Chaves, L. S., Melo, M. R., Freitas, A. L., Medeiros, J. V., & Barbosa, A. L. (2014). Polysaccharide isolated from Agardhiella ramosissima: Chemical structure and anti-inflammation activity. Carbohydrate Polymers , 99(1), 59-67. PMid:24274479. http://dx.doi.org/10.1016/j.carbpol.2013.08.071.

59 Mazumder, S., Ghosal, P. K., Pujol, C. A., Carlucci, M. J., Damonte, E. B., & Ray, B. (2002). Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). International Journal of Biological Macromolecules, 31(1-3), 87-95. PMid:12559431. http://dx.doi.org/10.1016/S0141-8130(02)00070-3.

60 Wang, L., Yao, Y., Sang, W., Yang, X., & Ren, G. (2015). Structural features and immunostimulating effects of three acidic polysaccharides isolated from Panax quinquefolius. International Journal of Biological Macromolecules, 80, 77-86. PMid:26056990. http://dx.doi.org/10.1016/j.ijbiomac.2015.06.007.

61 Xia, Y.-G., Liang, J., Yang, B.-Y., Wang, Q.-H., & Kuang, H.-X. (2015). Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy. Carbohydrate Polymers, 121, 449-456. PMid:25659720. http://dx.doi.org/10.1016/j.carbpol.2014.12.058.

62 Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine and Pharmacotherapy, 64(1), 21-28. PMid:19766438. http://dx.doi.org/10.1016/j.biopha.2009.03.005.

63 Wang, J., Zhang, Q., Zhang, Z., & Li, Z. (2008). Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42(2), 127-132. PMid:18023861. http://dx.doi.org/10.1016/j.ijbiomac.2007.10.003.

64 Cosson, J., Deslandes, E., Zinoun, M., & Mouradi-Givernaud, A. (1995). Carrageenans and agars, red algal polysaccharides. In: F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (pp. 269-324). Bristol: Biopress Ltd.

65 Grant, C. A., Twigg, P. C., Savage, M. D., Woon, W. H., & Greig, D. (2012). Mechanical investigations on agar gels using atomic force microscopy: effect of deuteration. Macromolecular Materials and Engineering, 297(3), 214-218. http://dx.doi.org/10.1002/mame.201100164.

5b7c5fe40e88252e1c896e53 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections