Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and characterization of microalgae fatty acids or Aloe vera oil microcapsules

Badke, Luiza Brescovici; Silva, Bruno Campos da; Carvalho-Jorge, Agne Roani de; Taher, Dhyogo Mileo; Riegel-Vidotti, Izabel Cristina; Marino, Cláudia Eliana Bruno

Downloads: 0
Views: 180


It’s proposed a single methodology for the encapsulation of Aloe vera oil or microalgae fatty acids using the complex coacervation process between gelatin and gum arabic. Although a very recurrent method, it is not trivial to establish a single coacervation methodology to encapsulate different compounds. The optimal synthesis conditions, that resulted in the best yield and encapsulation efficiency, are 1:1 (m/m) wall-to-core ratio, a temperature of 40°C and agitation speed of 10,000 rpm. Optical microscopy analysis revealed that the microcapsules are spherical, have average diameters of 112 μm (A. vera) and 118 μm (microalgae) and do not form agglomerates. The microcapsules were characterized by the osmotic pressure at which they ruptured, allowing the calculation of their mechanical resistance, which resulted in 392 MPa (A. vera) and 425 MPa (microalgae). The presented optimized methodology to encapsulate both compounds aims to contribute to their efficient and rational use, especially in cosmeceutical applications.


cosmeceutics; gelatin; gum arabic; morphology; osmotic pressure.


1 Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation27(3), 187-197. http://dx.doi.org/10.3109/02652040903131301. PMid:20406093. 

2 Alvim, I. D., & Grosso, C. R. F. (2010). Microparticles obtained by complex coacervation: influence of the type of reticulation and the drying process on the release of the core material. Food Science and Technology (Campinas)30(4), 1069-1076. http://dx.doi.org/10.1590/S0101-20612010000400036

3 Kizilay, E., Kayitmazer, A. B., & Dubin, P. L. (2011). Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Advances in Colloid and Interface Science167(1-2), 24-37. http://dx.doi.org/10.1016/j.cis.2011.06.006. PMid:21803318. 

4 Siow, L. F., & Ong, C. S. (2013). Effect of pH on garlic oil encapsulation by complex coacervation. Food Processing & Technology4, 1-5. 

5 Da Silva, B. C., de Oliveira, M., Ferreira, J. G. L., Sierakowski, M. R., Simas-Tosin, F. F., Orth, E. S., & Riegel-Vidotti, I. C. (2015). Polyelectrolyte complexes from gum arabic and gelatin: optimal complexation pH as a key parameter to obtain reproducible microcapsules. Food Hydrocolloids46, 201-207. http://dx.doi.org/10.1016/j.foodhyd.2014.12.022

6 Justi, P. N., Sanjinez-Argandoña, E. J., & Macedo, M. L. R. (2018). Microencapsulation of Pequi pulp oil by complex coacervation. Revista Brasileira de Floricultura40(2), 1-12. http://dx.doi.org/10.1590/0100-29452018874

7 Yang, X., Gao, N., Hu, L., Li, J., & Sun, Y. (2015). Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering161, 87-93. http://dx.doi.org/10.1016/j.jfoodeng.2015.03.027

8 Sánchez, F. M., García, F., Calvo, P., Bernalte, M. J., & González-Gómez, D. (2016). Optimization of broccoli microencapsulation process by complex coacervation using response surface methodology. Innovative Food Science & Emerging Technologies34, 243-249. http://dx.doi.org/10.1016/j.ifset.2016.02.008

9 Dong, Z., Ma, Y., Hayat, K., Jia, C., Xia, S., & Zhang, X. (2011). Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. Journal of Food Engineering104(3), 455-460. http://dx.doi.org/10.1016/j.jfoodeng.2011.01.011

10 Costa, A. (2012). Tratado internacional de cosmecêuticos. Rio de Janeiro: Guanabara Koogan Ltda. 

11 Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in synthetic and naturally occurring polymers by electrohydrodynamic processing of interest in food technology and bioactive packaging. Journal of Agricultural and Food Chemistry65(22), 4439-4448. http://dx.doi.org/10.1021/acs.jafc.7b01393. PMid:28499089. 

12 Hashemi, S. A., Madani, S. A., & Abediankenari, S. (2015). The review on properties of Aloe vera in healing of cutaneous wounds. BioMed Research International2015, 714216. http://dx.doi.org/10.1155/2015/714216. PMid:26090436. 

13 Maan, A. A., Nazir, A., Khan, M. K. I., Ahmad, T., Zia, R., Murid, M., & Abrar, M. (2018). The therapeutic properties and applications of aloe vera: a review. Journal of Herbal Medicine12, 1-10. http://dx.doi.org/10.1016/j.hermed.2018.01.002

14 Baruah, A., Bordoloi, M., & Deka Baruah, H. P. (2016). Aloe vera: a multipurpose industrial crop. Industrial Crops and Products94(30), 951-963. http://dx.doi.org/10.1016/j.indcrop.2016.08.034.

15 Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering101(2), 87-96. http://dx.doi.org/10.1263/jbb.101.87. PMid:16569602. 

16 Scherer, M. D., de Oliveira, A. C., Filho, F. J. C. M., Ugaya, C. M. L., Mariano, A. B., & Vargas, J. V. C. (2017). Environmental study of producing microalgal biomass and bioremediation of cattle manure effluents by microalgae cultivation. Clean Technologies and Environmental Policy19(6), 1745-1759. http://dx.doi.org/10.1007/s10098-017-1361-x. [

17 Wang, H. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology184, 355-362. http://dx.doi.org/10.1016/j.biortech.2014.12.001. PMid:25537136. 

18 Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition5, 58. http://dx.doi.org/10.3389/fnut.2018.00058. PMid:30109233.

19 Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories17, 36. http://dx.doi.org/10.1186/s12934-018-0879-x. PMid:29506528. 

20 Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae – A review. Journal of Algal Biomass Utilization3(4), 89-100. 

21 Yuan, L., Liang, G., Xie, J., & He, S.-B. (2007). Synthesis and characterization of microencapsulated dicyclopentadiene with melamine–formaldehyde resins. Colloid & Polymer Science285(7), 781-791. http://dx.doi.org/10.1007/s00396-006-1621-5

22 Darwish, M. A., Abdulrahim, H. K., Hassan, A. S., Mabrouk, A. A., & Sharif, A. O. (2014). The forward osmosis and desalination. Desalination and Water Treatment57(10), 1-27. http://dx.doi.org/10.1080/19443994.2014.995140

23 Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems – A review (Part 1). Tropical Journal of Pharmaceutical Research12(2), 255-264. http://dx.doi.org/10.4314/tjpr.v12i2.19

24 Li, Q., Mishra, A. K., Kim, N. H., Kuila, T., Lau, K., & Lee, J. H. (2013). Effects of processing conditions of poly (methylmethacrylate) encapsulated liquid curing agent on the properties of self-healing composites. Composites. Part B, Engineering49, 6-15. http://dx.doi.org/10.1016/j.compositesb.2013.01.011

25 Liao, L., Zhang, W., Zhao, Y., & Li, W. (2010). Preparation and characterization of microcapsules for Self-healing materials. Chemical Research in Chinese Universities26(3), 496-500.

26 Ré, M. (1998). Microencapsulation by spray drying. Drying Technology16(6), 11951236. 

27 Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O., & Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chemistry190, 1109-1115. http://dx.doi.org/10.1016/j.foodchem.2015.06.065. PMid:26213083. 

28 Goodwin, J. (2009). Colloids and interfaces with surfactants and polymers: an introduction. Chichester: Wiley-Blackwell 

29 Murray, G. (1997). Handbook of materials selection for engineering applications. New York: Marcel Dekker. 

30 Gao, C., Donath, E., Moya, S., Dudnik, V., & Möhwald, H. (2001). Elasticity of hollow polyelectrolyte capsules prepared by the layer-by-layer technique. The European Physical Journal E5(1), 21-27. http://dx.doi.org/10.1007/s101890170083

31 Prata, A. S., Zanin, M. H. A., Ré, M. I., & Grosso, C. R. F. (2008). Release properties of chemical and enzymatic crosslinked gelatin–gum arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloids and Surfaces. B, Biointerfaces67(2), 171-178. http://dx.doi.org/10.1016/j.colsurfb.2008.08.014. PMid:18835139. 

32 Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biometical applications. Trends in Biotechnology33(6), 362-369. http://dx.doi.org/10.1016/j.tibtech.2015.03.008. PMid:25887334. 

33 Kim, B., Shin, J. K., Lee, J. G., & Sohn, I. S. (2014). Effects of packing parameter on plastic article dimensions in the plastic injection molding. Journal of the Korean Society for Precision Engineering31(1), 9-13. http://dx.doi.org/10.7736/KSPE.2014.31.1.9

5e8e33600e88252e581ad514 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections