Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.01118
Polímeros: Ciência e Tecnologia
Original Article

Synthesis and characterization of the photoswitchable poly(methyl methacrylate- random-methacrylate spirooxazine)

Nguyen, Tam Huu; Tran, Phuc Huynh; Thai, Linh Duy; Truong, Thuy Thu; Nguyen, Le-Thu T.; Nguyen, Ha Tran

Downloads: 0
Views: 710

Abstract

The photoswitchable poly(methyl methacrylate-random-methacrylate spirooxazine) was synthesized via atom transfer radical polymerization with the feed mole ratio of MMA/MSp comonomer of about 5.5/1. Well-defined poly(methyl methacrylate- random-methacrylate spirooxazine) have been obtained with the average molecular weight (Mn) of 6500 g/mol and polydispersity of 1.21. The structure and properties of the resulting copolymers were characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography, Fourier Transform infrared, UV-visible spectroscopy, and differential scanning calorimetry. Moreover, the copolymer exhibited the erasable and rewritable photoimaging on the solid state film which could to be as potential candidate for optical data storage materials.

Keywords

spirooxazine; controlled radical polymerization; photoswitching polymers

References

1 Mizokuro, T., Mochizuki, H., Kobayashi, A., Horiuchi, S., Yamamoto, N., Tanigaki, N., & Hiraga, T. (2004). Selective doping of photochromic dye into nanostructures of diblock copolymer films by vaporization in a vacuum. Chemistry of Materials,16(18), 3469-3475. http://dx.doi.org/10.1021/cm049557u. 

2 Fischer, E., & Hirshberg, Y. (1954). Photochromism and reversible multiple internal transitions in some spiropyrans at low temperatures. Journal of the Chemical Society , 297-303. http://dx.doi.org/10.1039/JR9540000297. 

3 Lokshin, V. A., Samat, A., & Metelitsa, A. V. (2002). Spirooxazines: synthesis, structure, spectral and photochromic properties. Russian Chemical Reviews71(11), 893-916. http://dx.doi.org/10.1070/RC2002v071n11ABEH000763. 

4 Bouas-Laurent, H., & Dürr, H. (2001). Organic photochromism. Pure and Applied Chemistry73(4), 639-665. http://dx.doi.org/10.1351/pac200173040639. 

5 Berkovic, G., Krongauz, V., & Weiss, V. (2000). Spiropyrans and spirooxazines for memories and switches. Chemical Reviews100(5), 1741-1754. http://dx.doi.org/10.1021/cr9800715. PMid:11777418. 

6 Lin, J. S. (2003). Interaction between dispersed photochromic compound and polymer matrix. European Polymer Journal39(8), 1693-1700. http://dx.doi.org/10.1016/S0014-3057(03)00058-2. 

7 Ock, K., Jo, N., Kim, J., Kim, S., & Koh, K. (2001). Thin film optical waveguide type UV sensor using a photochromic molecular device, spirooxazine. Synthetic Metals , 117(1-3), 131-133. http://dx.doi.org/10.1016/S0379-6779(00)00553-1.

8 Myles, A. J., Wigglesworth, T. J., & Branda, N. R. (2003). A multi-addressable photochromic 1,2-dithienylcyclopentene-phenoxynaphthacenequinone hybrid. Advanced Materials , 15(9), 745-748. http://dx.doi.org/10.1002/adma.200304917. 

9 Corredor, C. C., Huang, Z. L., & Belfield, K. D. (2006). Two‐photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Advanced Materials18(21), 2910-2914. http://dx.doi.org/10.1002/adma.200600826. 

10 Lim, S. J., Seo, J., & Park, S. Y. (2006). Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. Journal of the American Chemical Society , 128(45), 14542-14547. http://dx.doi.org/10.1021/ja0637604. PMid:17090038. 

11 Lim, S. J., An, B. K., & Park, S. Y. (2005). Bistable photoswitching in the film of fluorescent photochromic polymer: enhanced fluorescence emission and its high contrast switching. Macromolecules38(15), 6236-6239. http://dx.doi.org/10.1021/ma0504163.

12 Jiang, G., Wang, S., Yuan, W., Jiang, L., Song, Y., Tian, H., & Zhu, D. (2006). Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chemistry of Materials18(2), 235-237. http://dx.doi.org/10.1021/cm052251i. 

13 Ventura, C., Thornton, P., Giordani, S., & Heise, A. (2014). Synthesis and photochemical properties of spiropyran graft and star polymers obtained by ‘click’ chemistry. Polymer Chemistry5(21), 6318-6324. http://dx.doi.org/10.1039/C4PY00778F.

14 Qu, W.-J., Li, W.-T., Zhang, H.-L., Wei, T.-B., Lin, Q., Yao, H., & Zhang, Y.-M. (2017). A rational designed fluorescent and colorimetric dual-channel sensor for cyanide anion based on the PET effect in aqueous medium. Sensors and Actuators. B, Chemical , 241, 430-437. http://dx.doi.org/10.1016/j.snb.2016.10.100. 

15 Kim, S. H., Hwang, I. J., Gwon, S. Y., & Son, Y. A. (2010). Photoregulated optical switching of poly(N-isopropylacrylamide) hydrogel in aqueous solution with covalently attached spironaphthoxazine and D-π-A type pyran-based fluorescent dye. Dyes and Pigments87(2), 158-163. http://dx.doi.org/10.1016/j.dyepig.2010.03.014. 

5db0581c0e88251e2461d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections