Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Preparation and analysis of melamine and melamine-silica as clarifying agents of waste lubricating oil

Mirna Sales Loiola Rosa; Timm Knoerzer; Francisco Cardoso Figueiredo; José Ribeiro dos Santos Júnior

Downloads: 1
Views: 277


Melamine is a key compound used as a clarifying agent for waste lubricating oil primarily due to its excellent adsorbent properties. Moreover, considerable interest exists for the further modification of melamine in order to provide a remediation agent with improved clarification capacity. In this study, hexamethylolmelamine was prepared using a solution of formaldehyde, which provided an agent capable of incorporation into a silicate polymer framework. Subsequently, the resultant monomer was added to a solution of silicate to produce the melamine-silica polymer. The melamine and melamine-silica polymer were characterized using the techniques of XRD, FTIR, SSA and thermal analysis to confirm structural and morphological characteristics. These characterizations indicated that the increase in the surface area of the 0.315 m2/g to melamine to 26.71 m2/g of melamine-silica suggests the effective introduction of silanols groups to hexamethylolmelamine and, therefore, corresponds to thehigh performance in relation to melamine as clarifying of waste lubricant oil.


clarifying, melamine, melamine silica, waste lubricating oil


1 Kuczenski, B., Geyer, R., Zink, T., & Henderson, A. (2014). Material flow analysis of lubricating oil use in California. Resources, Conservation and Recycling, 93, 59-66. http://dx.doi.org/10.1016/j.resconrec.2014.10.001.

2 Silveira, E. L. C., Coelho, R. C., Moita, J. M., No., Moura, C. V. R., & Moura. (2010). Determination of metals in lubricating oils, from public transportation, using the FAAS. Quimica Nova, 33(9), 1863-1867. http://dx.doi.org/10.1590/S0100-40422010000900008.

3 Mohammed, R. R., Ibrahim, I. A. R., Taha, A. H., & McKay, G. (2013). Waste lubricating oil treatment by extraction and adsorption. Chemical Engineering Journal, 220, 343-351. http://dx.doi.org/10.1016/j.cej.2012.12.076.

4 Salem, S., Salem, A., & Babaei, A. A. (2015). Application of Iranian nano-porous Ca-bentonite for recovery of waste lubricant oil by distillation and adsorption techniques. Journal of Industrial and Engineering Chemistry, 23, 154-162. http://dx.doi.org/10.1016/j.jiec.2014.08.009.

5 Emam, A. E., & Abeer, M. S. (2013). Re-refining of used lube oil, i- by solvent extraction and vacuum distillation followed by hydrotreating. Petroleum and Coal, 55(4), 179-187. Retrieved in 2020, January 22, from https://www.vurup.sk/na_stiahnutie/re-refining-used-lube-oil-solvent-extraction-vacuum-distillation-followed-hydrotreating/

6 Mircescu, E. N., Oltean, M., Chis, V., & Leopold, N. (2012). FTIR, FT-Raman, SERS and DFT study on melamine. Vibrational Spectroscopy, 62, 165-171. http://dx.doi.org/10.1016/j.vibspec.2012.04.008.

7 Levchik, V. S., Balabanovich, I. A., Levchik, F. G., & Costa, L. (1997). Effect of melamine and its salts on combustionand thermal decomposition of polyamide 6. Fire and Materials, 21(2), 75-83. http://dx.doi.org/10.1002/(SICI)1099-1018(199703)21:2<75::AID-FAM597>3.0.CO;2-P.

8 Arce, M. M., Sanllorente, S., & Ortiz, C. M. (2019). Kinetic models of migration of melamine and formaldehyde from melamine kitchenware with data of liquid chromatography. Journal of Chromatography A, 1599, 115-124. http://dx.doi.org/10.1016/j.chroma.2019.04.006. PMid:30975531.

9 Norouzi, M., Elhamifar, D., & Mirbagheri, R. (2019). Phenylene-based periodic mesoporous organosilica supported melamine: an efficient, durable and reusable organocatalyst. Microporous and Mesoporous Materials, 278, 251-256. http://dx.doi.org/10.1016/j.micromeso.2018.11.040.

10 Fink, K. J. (2013). Melamine resins. In K. J. Fink (Ed.), Reactive polymers fundamentals and applications : a concise guide to industrial polymers (2nd ed., Chapt. 6, pp. 193-201). Norwich: William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-3149-7.00006-1.

11 Airoldi, C., & Farias, R. F. (2000). The use of organofuntionalized silica gel as sequestrating agent for metals. Química Nova, 23(4), 496-503. http://dx.doi.org/10.1590/S0100-40422000000400012.

12 Merline, J. D., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: curing studies and reaction mechanism. Polymer Journal, 45(4), 413-419. http://dx.doi.org/10.1038/pj.2012.162.

13 Yin, N., Wang, K., Xia, Y., & Li, Z. (2018). Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (II). Desalination, 430, 120-127. http://dx.doi.org/10.1016/j.desal.2017.12.057.

14 Baraka, A., Hatem, H., El-Geundi, M. S., Tantawy, H., Karaghiosoff, K., Gobara, M., Elbeih, A., Shoaib, M., Elsayed, M. A., & Kotb, M. M. (2019). A new cationic silver(I)/melamine coordination polymer, [Ag2(melamine)]n2n+: Synthesis, characterization and potential use for aqueous contaminant anion exchange. Journal of Solid State Chemistry, 274, 168-175. http://dx.doi.org/10.1016/j.jssc.2019.03.038.

15 Zhu, H., & Kannan, K. (2019). Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environment International, 130, 104950. http://dx.doi.org/10.1016/j.envint.2019.104950. PMid:31252165.

16 Shao, L., Liu, M., Sang, Y. S., & Huang, J. (2019). One-pot synthesis of melamine-based porous polyamides for CO2 capture. Microporous and Mesoporous Materials, 285, 105-111. http://dx.doi.org/10.1016/j.micromeso.2019.05.005.

17 Jeong, B., Park, B., & Causin, V. (2019). Influence of synthesis method and melamine content of urea-melamine-formaldehyde resins to their features in cohesion, interphase, and adhesion performance. Journal of Industrial and Engineering Chemistry, 79, 87-96. http://dx.doi.org/10.1016/j.jiec.2019.05.017.

18 Rehman, A., & Park, S. (2018). Highlighting the relative effects of surface characteristics and porosity on CO2 capture by adsorbents templated from melamine-based polyaminals. Journal of Solid State Chemistry, 258, 573-581. http://dx.doi.org/10.1016/j.jssc.2017.11.019.

19 Seo, P. W., Khan, A. N., Hasan, Z., & Jhung, H. S. (2016). Adsorptive removal of artificial sweeteners from water using metal-organic frameworks functionalized with urea or melamine. Applied Materials Interfaces, 8(43), 29799-29807. http://dx.doi.org/10.1021/acsami.6b11115. PMid:27723294.

20 Sahiner, N., Demirci, S., & Sel, K. (2016). Covalent organic framework based on melamine and dibromoalkanes for versatile use. Journal of Porous Materials, 23(4), 1025-1035. http://dx.doi.o:rg/10.1007/s10934-016-0160-9.

21 American Society for Testing and Materials – ASTM. (2012). ASTM D1500-12: standard test method for ASTM color of petroleum products (ASTM color scale). West Conshohocken: ASTM International.

22 American Society for Testing and Materials – ASTM. (2018). ASTM D445-18: standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). West Conshohocken: ASTM International.

23 American Society for Testing and Materials – ASTM. (2011). ASTM D664-11: standard test method for acid number of petroleum products by potentiometric titration. West Conshohocken: ASTM International.

24 American Society for Testing and Materials – ASTM. (2013). ASTM D482-13: standard test method for ash from petroleum products. West Conshohocken: ASTM International.

25 Schwarz, D., & Weber, J. (2018). Organic-solvent free synthesis of mesoporous and narrow-dispersed melamine resin particles for water treatment applications. Polymer, 155, 83-88. http://dx.doi.org/10.1016/j.polymer.2018.09.028.

26 Kalnes, N. T., Shonnard, R. D., & Schuppel, A. (2006). LCA of a spent lube oil Re-refining process. Computer-Aided Chemical Engineering, 21, 713-718. http://dx.doi.org/10.1016/S1570-7946(06)80129-X.

27 Selvi, P. K., Sharma, M., & Kamyotra, J. S. (2013). Spent oil management and its recycling potential in India inventory and issues. Procedia Environmental Sciences, 18, 742-755. http://dx.doi.org/10.1016/j.proenv.2013.04.101.

28 Du, Q., Zhou, Y., Pan, X., Zhang, J., Zhuo, Q., Chen, S., Chen, G., Liu, T., Xu, F., & Yan, F. (2016). A graphene-melamine-sponge for efficient and recyclable dye adsorption. RSC Advances, 6(59), 54589-54596. http://dx.doi.org/10.1039/C6RA08412E.

29 Rebelo, M. M., Nascimento, D. L., & Corrêa, M. A. J. (2015). Sílica gel obtida de escória de alto forno: Marabá, Pará. Cerâmica, 61(359), 359-366. http://dx.doi.org/10.1590/0366-69132015613601897.

30 Bal, A., Acar, I., & Guclu, G. (2012). A novel type nanocomposite coating based on alkyd-melamine formaldehyde resin containing modified silica: preparation and film properties. Journal of Applied Polymer Science, 125(S1), 85-92. http://dx.doi.org/10.1002/app.35029.

31 Isam, H. A., Yousif, I. M., & Takialdin, A. H. (2013). Melamine-attapalgite and attapalgite- melamine- formaldehyde physical interactions: synthesis and characterization. Al-Mustansiriyah Journal of Science, 24(1), 105-114., Retrieved in 2020, January 22, from https://www.iasj.net/iasj?func=fulltext&aId=72831

32 Sangeetha, V., Kanagathara, N., Sumathi, R., Sivakumar, N., & Anbalagan, G. (2013). Spectral and thermal degradation of melamine cyanurate. Journal of Materials, 2013, 262094. http://dx.doi.org/10.1155/2013/262094.

33 Shahbazi, A., Younesi, H., & Badiei, A. (2011). Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal, 168(2), 505-518. http://dx.doi.org/10.1016/j.cej.2010.11.053.

34 Pevida, C., Drage, C. T., & Snape, C. E. (2008). Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon, 46(11), 1464-1474. http://dx.doi.org/10.1016/j.carbon.2008.06.026.

35 Cheng, W., Liu, Z., & Wang, Y. (2013). Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples. Talanta, 116, 396-402. http://dx.doi.org/10.1016/j.talanta.2013.05.067. PMid:24148421.

36 Papoulis, D., Komarneni, S., Nikolopoulou, A., Tsolis-Katagas, P., Panagiotaras, D., Kacandes, H. G., Zhang, P., Yin, S., Sato, T., & Katsuki, H. (2010). Palygorskite- and Halloysite-TiO2 nanocomposites: synthesis and photocatalytic activity. Applied Clay Science, 50(1), 118-124. http://dx.doi.org/10.1016/j.clay.2010.07.013.

37 Ajdari, F. B., Kowsari, E., Ehsani, A., Chepyga, L., Schirowski, M., Jäger, S., Kasian, O., Hauke, F., & Ameri, T. (2018). Melamine-functionalized graphene oxide: synthesis, characterization and considering as pseudocapacitor electrode material with intermixed POAP polymer. Applied Surface Science, 459, 874-883. http://dx.doi.org/10.1016/j.apsusc.2018.07.215.

38 Yaumi, A. L., Bakar, M. Z. A., & Hameed, B. H. (2018). Melamine-nitrogenated mesoporous activated carbon dioxide adsorption in fixed-bed. Energy, 155, 46-55. http://dx.doi.org/10.1016/j.energy.2018.04.183.

39 Balabanovich, A. I. (2004). The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate). Polymer Degradation & Stability, 84(3), 451-458. http://dx.doi.org/10.1016/j.polymdegradstab.2003.12.003.

40 Scapin, A. M., Duarte, L. C., Bustillos, V. W. O. J., & Sato, M. I. (2009). Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS. Radiation Physics and Chemistry, 78(7-8), 733-735. http://dx.doi.org/10.1016/j.radphyschem.2009.03.063.

41 Lima, A. E. A., Sales, H. B., Lima, L. C., Santos, J. C. O., Santos, I. M. G., Souza, A. G., & Rosenhaim, R. (2017). Natural clay applied to the clarification of used automotive lubricating oil. Cerâmica, 63(368), 517-523. http://dx.doi.org/10.1590/0366-69132017633682123.

5f1045160e8825d943e52f60 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections