Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.01018
Polímeros: Ciência e Tecnologia
Original Article

Sulfonated poly(ether ether ketone)/hydroxyapatite membrane as biomaterials: process evaluation

Pimentel, Cristiane Agra; Souza, José William de Lima; Santos, Flávia Suzany Ferreira dos; Sá, Mayelli Dantas de; Ferreira, Valéria Pereira; Barreto, Gislaine Bezerra de Carvalho; Rodrigues, José Filipe Bacalhau; Sousa, Wladymyr Jefferson Bacalhau de; Britto Filho, Cláudio Orestes; Sousa, Francisco Kegenaldo Alves de; Fook, Marcus Vinicius Lia

Downloads: 0
Views: 23

Abstract

Poly(ether ether ketone) (PEEK) has excellent properties, such as high biocompatibility and an elastic modulus similar to bone, which makes it a suitable biomaterial. When modified with sulfuric acid (H2SO4) and hydroxyapatite (HA), its workability and bioactivity is enhanced, and this makes it of great importance in medicine. This study investigates a better combination of process parameters to manufacture sulfonated PEEK/HA (SPEEK/HA) membranes for biomaterials. Chemical, thermal, and biological analyses were carried out on all samples. The sulfonated structure was observed to enhance wettability, adhesion, and cell viability. Furthermore, an increase in the degree of sulfonation facilitated their workability as required for biomaterials; making them suitable for osseointegration. Besides, the SPEEK/HA membranes presented cell adhesion, confirming the viability to use as biomaterial. This study presents a cheap alternative method to easily process biomaterials of improved workability

Keywords

biomaterial; chemical modification; hydroxyapatite; membrane; SPEEK

References

1 Wang, M., Tang, S. J., McGrady, L. M., & Rao, R. D. (2013). Biomechanical comparison of supplemental posterior fixations for two-level anterior lumbar interbody fusion. Journal of Engineering in Medicine227(3), 245-250. http://dx.doi.org/10.1177/0954411912465057. PMid:23662340. 

2 O’Reilly, E. B., Barnett, S., Madden, C., Welch, B., Mickey, B., & Rozen, S. (2015). Computed-tomography modeled polyetheretherketone (PEEK) implants in revision cranioplasty. Journal of Plastic, Reconstructive & Aesthetic Surgery68(3), 329-338. http://dx.doi.org/10.1016/j.bjps.2014.11.001. PMid:25541423. 

3 Siddiq, A. R., & Kennedy, A. R. (2015). Porous polyetheretherketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Materials Science and Engineering C47(1), 180-188. http://dx.doi.org/10.1016/j.msec.2014.11.044. PMid:25492187. 

4 Aguiar, K. R., Batalha, G. P., Peixoto, M., Ramos, A., & Pezzin, S. H. (2012). Produção de membranas híbridas zirconizadas de SPEEK/Copolissilsesquioxano para aplicação em células a combustível do tipo PEM. Polímeros: Ciência e Tecnologia22(5), 453-459. http://dx.doi.org/10.1590/S0104-14282012005000060. 

5 Zhao, Y., Wong, H. M., Wang, W., Li, P., Xu, Z., Chong, E. Y., Yan, C. H., Yeung, K. W., & Chu, P. K. (2013). Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials , 34(37), 9264-9277. http://dx.doi.org/10.1016/j.biomaterials.2013.08.071. PMid:24041423. 

6 Kalambettu, A., & Dharmalingam, S. (2014). Fabrication and in vitro evaluation of sulphonated polyetheretherketone/nano-hydroxyapatite composites as bone graft materials. Materials Chemistry and Physics147(1-2), 168-177. http://dx.doi.org/10.1016/j.matchemphys.2014.04.024. 

7 Montero, J. F., Tajiri, H. A., Barra, G. M., Fredel, M. C., Benfatti, C. A., Magini, R. S., Pimenta, A. L., & Souza, J. C. (2017). Biofilm behavior on sulfonated polyetheretherketone (sPEEK). Materials Science and Engineering C70(1), 456-460. http://dx.doi.org/10.1016/j.msec.2016.09.017. PMid:27770916. 

8 Kurtz, S. M., & Devine, J. N. (2007). Applications of polyetheretherketone in trauma, arthroscopy, and cranial defect repair. In S. Lovald & S. M. Kurtz (Eds.), PEEK biomaterials handbook, (pp. 243-260). New York: Springer . 

9 International Organization for Standardization – ISO. (2009). BS EN ISO 10993-5: biological evaluation of medical devices: tests for in vitro cytotoxicity . Genebra: ISO.

10 Conceição, T. F., Bertolino, J. R., Barra, G. M., Mireski, S. L., Joussef, A. C., & Pires, A. T. (2008). Preparation and characterization of polyetheretherketone derivatives. Journal of the Brazilian Chemical Society19(1), 111-116. http://dx.doi.org/10.1590/S0103-50532008000100016. 

11 Jiang, R., Kunz, H. R., & Fenton, J. M. (2005). Investigation of membrane property and fuel cell behavior with sulfonated polyetheretherketone electrolyte: temperature and relative humidity effects. Journal of Power Sources150(4), 120-128. http://dx.doi.org/10.1016/j.jpowsour.2005.03.180. 

12 Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K., & Kaliaguine, S. (2004). Synthesis and characterization of sulfonated polyetheretherketone for proton exchange membranes. Journal of Membrane Science229(1-2), 95-106. http://dx.doi.org/10.1016/j.memsci.2003.09.019. 

13 Almasi, D., Izman, S., Assadian, M., Ghanbari, M., & Abdul Kadir, M. R. (2014). Crystalline HA coating on PEEK via chemical deposition. Applied Surface Science314(30), 1034-1040. http://dx.doi.org/10.1016/j.apsusc.2014.06.074. 

14 Jaafar, J., Ismail, A., & Mustafa, A. (2007). Physicochemical study of polyetheretherketone electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Materials Science and Engineering A , 460(15), 475-484. http://dx.doi.org/10.1016/j.msea.2007.02.095. 

15 Janaki, K., Elamathi, S., & Sangeetha, D. (2005). Development and characterization of polymer ceramic composites for orthopedic applications. Artificial Organs , 22(3), 169-178. Retrieved in 2018, February 12, from http://medind.nic.in/taa/t09/i3/taat09i3p169.pdf 

16 Zaidi, S. J., Mikhailenko, S. D., Robertson, G., Guiver, M., & Kaliaguine, S. (2000). Proton conducting composite membranes from polyetheretherketone and heteropolyacids for fuel cell applications. Journal of Membrane Science173(1), 17-34. http://dx.doi.org/10.1016/S0376-7388(00)00345-8. 

17 Mahjoubi, H., Buck, E., Manimunda, P., Farivar, R., Chromik, R., Murshed, M., & Cerruti, M. (2017). Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential. Acta Biomaterialia47(1), 149-158. http://dx.doi.org/10.1016/j.actbio.2016.10.004. PMid:27717913. 

18 Zhou, H., & Lee, J. (2011). Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia7(7), 2769-2781. http://dx.doi.org/10.1016/j.actbio.2011.03.019. PMid:21440094. 

5db05c530e8825c43361d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections