Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Short Communication

Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

Felix, Manuel; Carpintero, Valme; Romero, Alberto; Guerrero, Antonio

Downloads: 0
Views: 718


Soy Protein Isolate (SPI) has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB) as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.


bioplastics, DMTA, plasticizer, sorbitol, soy protein.


1. DiGregorio, B. E. (2009). Biobased performance bioplastic: mirel. Chemistry & Biology, 16(1), 1-2. PMid:19171300. http://dx.doi.org/10.1016/j.chembiol.2009.01.001.

2. Rocha, G. O., Farias, M. G., Carvalho, C. W. P., Ascheri, J. L. R., & Galdeano, M. C. (2014). Biodegradable composite films based on cassava starch and soy protein. Polímeros: Ciência e Tecnologia, 24(5), 587-595. http://dx.doi.org/10.1590/0104-1428.1355.

3. Thiré, R. M. S. M., Simao, R. A., Araújo, P. J. G., Achete, C. A., & Andrade, C. T. (2004). Reduction of hydrophilicity of biodegradable starch-based films by plasma polymerization. Polímeros: Ciência e Tecnologia, 14(1), 57-62. http://dx.doi.org/10.1590/S0104-14282004000100015.

4. Macea, R. B., De Hoyos, C. F., Montes, Y. G., Fuentes, E. M., & Ruiz, J. I. R. (2015). Synthesis and film properties of chitosan and whey. Polímeros: Ciência e Tecnologia, 25(1), 58-69. http://dx.doi.org/10.1590/0104-1428.1558.

5. Winkworth-Smith, C., & Foster, T. J. (2013). General overview of biopolymers: structure, properties, and applications. In S. Thomas, D. Durand, C. Chassenieux & P. Jyotishkumar (Eds.). Handbook of biopolymeric materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. http://dx.doi.org/10.1002/9783527652457.ch2.

6. Verbeek, C. J. R., & van den Berg, L. E. (2010). Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromolecular Materials and Engineering, 295(1), 10-21. http://dx.doi.org/10.1002/mame.200900167.

7. Genadios, A. (2002). Proteins based films and coting. New York: CRC Press. http://dx.doi.org/10.1201/9781420031980.

8. Jerez, A., Partal, P., Martinez, I., Gallegos, C., & Guerrero, A. (2005). Rheology and processing of gluten based bioplastics. Biochemical Engineering Journal, 26(3), 131-138. http://dx.doi.org/10.1016/j.bej.2005.04.010.

9. Felix, M., Martin-Alfonso, J. E., Romero, A., & Guerrero, A. (2014). Development of albumen/soy biobased plastic materials processed by injection molding. Journal of Food Engineering, 125, 7-16. http://dx.doi.org/10.1016/j.jfoodeng.2013.10.018.

10. Felix, M., Romero, A., Cordobes, F., & Guerrero, A. (2015). Development of crayfish bio-based plastic materials processed by small-scale injection moulding. Journal of the Science of Food and Agriculture, 95(4), 679-687. PMid:24909425. http://dx.doi.org/10.1002/jsfa.6747.

11. Perez, V., Felix, M., Romero, A., & Guerrero, A. (2016). Characterization of pea protein-based bioplastics processed by injection moulding. Food and Bioproducts Processing, 97, 100-108. http://dx.doi.org/10.1016/j.fbp.2015.12.004.

12. Fernández-Espada, L., Bengoechea, C., Cordobés, F., & Guerrero, A. (2016). Protein/glycerol blends and injection-molded bioplastic matrices: Soybean versus egg albumen. Journal of Applied Polymer Science, 133(6), n/a. http://dx.doi.org/10.1002/app.42980.

13. Suyatma, N. E., Tighzert, L., Copinet, A., & Coma, V. (2005). Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. Journal of Agricultural and Food Chemistry, 53(10), 3950-3957. PMid:15884822. http://dx.doi.org/10.1021/jf048790+.

14. Irissin-Mangata, J., Bauduin, G., Boutevin, B., & Gontard, N. (2001). New plasticizers for wheat gluten films. European Polymer Journal, 37(8), 1533-1541. http://dx.doi.org/10.1016/S0014-3057(01)00039-8.

15. Adebiyi, A. P., Adebiyi, A. O., Yamashita, J., Ogawa, T., & Muramoto, K. (2008). Purification and characterization of antioxidative peptides derived from rice bran protein hydrolysates. European Food Research and Technology, 228(4), 553-563. http://dx.doi.org/10.1007/s00217-008-0962-3.

16. Jerez, A., Partal, P., Martinez, I., Gallegos, C., & Guerrero, A. (2007). Protein-based bioplastics: effect of thermo-mechanical processing. Rheologica Acta, 46(5), 711-720. http://dx.doi.org/10.1007/s00397-007-0165-z.

17. International Organization for Standardization – ISO. (2012). ISO 527-2: plastics: determination of tensile properties: part 2: test conditions for moulding and extrusion plastics. Geneva: ISO. Retrieved in 26 May 2016, from http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=56046

18. American Society for Testing and Materials – ASTM. (2001). ASTM D-571: standard test method for water absorption of plastics. West Conshohocken: ASTM. http://dx.doi.org/10.1520/A0570_A0570M-98.

19. Felix, M., Romero, A., Martín-Alfonso, J. E., & Guerrero, A. (2015). Development of crayfish protein-PCL biocomposite material processed by injection moulding. Composites. Part B, Engineering, 78, 291-297. http://dx.doi.org/10.1016/j.compositesb.2015.03.057.

20. Rombouts, I., Lagrain, B., Brunnbauer, M., Koehler, P., Brijs, K., & Delcour, J. A. (2011). Identification of Isopeptide Bonds in Heat-Treated Wheat Gluten Peptides. Journal of Agricultural and Food Chemistry, 59(4), 1236-1243. PMid:21235244. http://dx.doi.org/10.1021/jf103579u.

21. Schmid, M., Müller, K., Sängerlaub, S., Stäbler, A., Starck, V., Ecker, F., & Noller, K. (2014). Mechanical and barrier properties of thermoplastic whey protein isolate/ethylene vinyl acetate blends. Journal of Applied Polymer Science, 131(23), n/a. http://dx.doi.org/10.1002/app.41172.

22. Tummala, P., Liu, W., Drzal, L. T., Mohanty, A. K., & Misra, M. (2006). Influence of Plasticiczers on Thermal and Mechanical Properties and Morphology of Soy-Based Bioplastics. Industrial & Engineering Chemistry Research, 45(22), 7491-7496. http://dx.doi.org/10.1021/ie060439l.
588371dd7f8c9d0a0c8b4ac8 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections