Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Articles

Use of biodegradable polymer for development of environmental tracers: a bibliometric review

Adriana Marques; Sandra Maria da Luz

Downloads: 0
Views: 56


Qualitative and quantitative measuring in water bodies, nuclear medicine, agriculture, and world oil production use tracers to monitor, evaluate and continuously improve their processes. The bibliometric information about the past and the future of artificial tracers, to monitor surface and groundwater by using sustainable biodegradable materials it will be important for future generation. To fulfil this purpose, bibliometric literature analysis has been considered as a solution to identify research areas that need to be improved. The results of this paper showed that even with the increase in research in ​​biopolymers, and the use of artificial tracers, academic development is still not significant. The United States, China, and Germany are the top publishers in this field however, there is no country that constantly develops research in these areas concomitantly using biodegradable polymers. Because of that, this field could be further explored, globally using innovative techniques and materials for new tracers.


polyhydroxybutyrate, polymeric membranes, nanocellulose, biodegradable materials, tracers


1 Barzegar, R., Moghaddam, A. A., Deo, R., Fijani, E., & Tziritis, E. (2018). Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. The Science of the Total Environment, 621, 697-712. http://dx.doi.org/10.1016/j.scitotenv.2017.11.185. PMid:29197289.

2 Kaboré, H. A., Vo Duy, S., Munoz, G., Méité, L., Desrosiers, M., Liu, J., Sory, T. K., & Sauvé, S. (2018). Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. The Science of the Total Environment, 616–617, 1089-1100. http://dx.doi.org/10.1016/j.scitotenv.2017.10.210. PMid:29100694.

3 Wei, C., Wang, Q., Song, X., Chen, X., Fan, R., Ding, D., & Liu, Y. (2018). Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas. Ecotoxicology and Environmental Safety, 152, 141-150. http://dx.doi.org/10.1016/j.ecoenv.2018.01.039. PMid:29402442.

4 Sultana, T., Murray, C., Ehsanul Hoque, M., & Metcalfe, C. D. (2017). Monitoring contaminants of emerging concern from tertiary wastewater treatment plants using passive sampling modelled with performance reference compounds. Environmental Monitoring and Assessment, 189(1), 1. http://dx.doi.org/10.1007/s10661-016-5706-4. PMid:27909849.

5 Andrade, L., O’Dwyer, J., O’Neill, E., & Hynds, P. (2018). Surface water flooding, groundwater contamination, and enteric disease in developed countries: a scoping review of connections and consequences. Environmental Pollution, 236, 540-549. http://dx.doi.org/10.1016/j.envpol.2018.01.104. PMid:29428708.

6 Erdal, D., & Cirpka, O. A. (2017). Preconditioning an ensemble Kalman filter for groundwater flow using environmental-tracer observations. Journal of Hydrology, 545, 42-54. http://dx.doi.org/10.1016/j.jhydrol.2016.11.064.

7 Battaglia, D., Birindelli, F., Rinaldi, M., Vettraino, E., & Bezzi, A. (2016). Fluorescent tracer tests for detection of dam leakages: the case of the Bumbuna dam - Sierra Leone. Engineering Geology, 205, 30-39. http://dx.doi.org/10.1016/j.enggeo.2016.02.010.

8 Long, A. J., Sawyer, J. F., & Putnam, L. D. (2008). Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA. Hydrogeology Journal, 16(2), 263-280. http://dx.doi.org/10.1007/s10040-007-0232-7.

9 Mahler, B., & Massei, N. (2007). Anthropogenic contaminants as tracers in an urbanizing karst aquifer. Journal of Contaminant Hydrology, 91(1-2), 81-106. http://dx.doi.org/10.1016/j.jconhyd.2006.08.010. PMid:17161500.

10 Näslund, O., Smits, A., Förander, P., Laesser, M., Bartek, J., Jr., Gempt, J., Liljegren, A., Daxberg, E. L., & Jakola, A. S. (2018). Amino acid tracers in PET imaging of diffuse low-grade gliomas: a systematic review of preoperative applications. Acta Neurochirurgica, 160(7), 1451. http://dx.doi.org/10.1007/s00701-018-3563-3. PMid:29797098.

11 Boester, U., & Rüde, T. R. (2020). Utilize gadolinium as environmental tracer for surface water-groundwater interaction in Karst. Journal of Contaminant Hydrology, 235, 103710. http://dx.doi.org/10.1016/j.jconhyd.2020.103710. PMid:33125978.

12 Silva, L. L., Donnici, C. L., Ayala, J. D., Freitas, C. H., Moreira, R. M., & Pinto, A. M. F. (2009). Traçadores: o uso de agentes químicos para estudos hidrológicos, ambientais, petroquímicos e biológicos. Química Nova, 32(6), 1576-1585. http://dx.doi.org/10.1590/S0100-40422009000600042.

13 Van der Schyff, M., Kanyerere, T., Israel, S., & Vermaak, N. (2020). Using multiple tracers and geological techniques to determine the connectivity between aquifer systems, West Coast, South Africa. Physics and Chemistry of the Earth, 118–119, 102863. http://dx.doi.org/10.1016/j.pce.2020.102863.

14 Ribeiro, G. L., Dausacker Bidone, E., Melo, M. A., & Gonzalez da Silva, I. P. (2016). Traçadores hidrossolúveis para caracterização de reservatórios de petróleo. Engevista, 18(1), 23-42. http://dx.doi.org/10.22409/engevista.v18i1.679.

15 Chambers, L. A., Gooddy, D. C., & Binley, A. M. (2019). Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: a review. Geoscience Frontiers, 10(5), 1643-1652. http://dx.doi.org/10.1016/j.gsf.2018.02.017.

16 Clémence, H., Marc, P., Véronique, D., & Toihir, A. (2017). Monitoring an artificial tracer test within streambed sediments with time lapse underwater 3D ERT. Journal of Applied Geophysics, 139, 158-169. http://dx.doi.org/10.1016/j.jappgeo.2017.02.003.

17 Darling, W. G., Gooddy, D. C., Riches, J., & Wallis, I. (2010). Using environmental tracers to assess the extent of river-groundwater interaction in a quarried area of the English Chalk. Applied Geochemistry, 25(7), 923-932. http://dx.doi.org/10.1016/j.apgeochem.2010.01.019.

18 Pavlovskiy, I., & Selle, B. (2015). Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system. Ground Water, 53(Suppl. 1), 156-165. http://dx.doi.org/10.1111/gwat.12262. PMid:25178951.

19 Zoellmann, K., Kinzelbach, W., & Fulda, C. (2001). Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. Journal of Hydrology, 240(3-4), 187-205. http://dx.doi.org/10.1016/S0022-1694(00)00326-7.

20 Einsiedl, F. (2005). Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. Journal of Hydrology, 312(1-4), 312-321. http://dx.doi.org/10.1016/j.jhydrol.2005.03.031.

21 Labat, D., & Mangin, A. (2015). Transfer function approach for artificial tracer test interpretation in karstic systems. Journal of Hydrology, 529, 866-871. http://dx.doi.org/10.1016/j.jhydrol.2015.09.011.

22 Heiß, L., Bouchaou, L., Tadoumant, S., & Reichert, B. (2020). Multi-tracer approach for assessing complex aquifer systems under arid climate: case study of the River Tata catchment in the Moroccan Anti-Atlas Mountains. Applied Geochemistry, 120, 104671. http://dx.doi.org/10.1016/j.apgeochem.2020.104671.

23 Schubert, M., Brueggemann, L., Knoeller, K., & Schirmer, M. (2011). Using radon as an environmental tracer for estimating groundwater flow velocities in single-well tests. Water Resources Research, 47(3), 1-8. http://dx.doi.org/10.1029/2010WR009572.

24 Heilweil, V. M., Sweetkind, D. S., & Gerner, S. J. (2014). Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river. Ground Water, 52(1), 71-83. http://dx.doi.org/10.1111/gwat.12030. PMid:23425448.

25 Carlo, L., Alessandra, B., Dario, S., Mauro, C., Gianfranco, G., Michele, S., & Paola, T. (2019). Testing the radon-in-water probe set-up for the measurement of radon in water bodies. Radiation Measurements, 128, 106179. http://dx.doi.org/10.1016/j.radmeas.2019.106179.

26 Sanford, W., Anderholm, S., Busenberg, E., Bexfield, L., & Plummer, L. N. (2004). Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow. Hydrogeology Journal, 12(4). http://dx.doi.org/10.1007/s10040-004-0326-4.

27 Irrgeher, J., & Prohaska, T. (2016). Application of non-traditional stable isotopes in analytical ecogeochemistry assessed by MC ICP-MS: a critical review. Analytical and Bioanalytical Chemistry, 408(2), 369-385. http://dx.doi.org/10.1007/s00216-015-9025-3. PMid:26446900.

28 Purdy, R. N., Dancer, B. N., Day, M. J., & Stickler, D. J. (1986). Bacillus phages as tracers of water movement. Water Science and Technology, 18(4-5), 149-153. http://dx.doi.org/10.2166/wst.1986.0190.

29 Poreda, R. J., Haszeldine, R. S., Shipton, Z. K., Wilkinson, M., Gilfillan, S. M. V., & Nelson, S. T. (2011). He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. International Journal of Greenhouse Gas Control, 5(6), 1507-1516. http://dx.doi.org/10.1016/j.ijggc.2011.08.008.

30 Roberts, J. J., Gilfillan, S. M., Stalker, L., & Naylor, M. (2017). Geochemical tracers for monitoring offshore CO2 stores. International Journal of Greenhouse Gas Control, 65(July), 218-234. http://dx.doi.org/10.1016/j.ijggc.2017.07.021.

31 Hillebrand, O., Nödler, K., Sauter, M., & Licha, T. (2015). Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer. The Science of the Total Environment, 506–507, 338-343. http://dx.doi.org/10.1016/j.scitotenv.2014.10.102. PMid:25460968.

32 Riley, E. A., Gould, T., Hartin, K., Fruin, S. A., Simpson, C. D., Yost, M. G., & Larson, T. (2016). Ultrafine particle size as a tracer for aircraft turbine emissions. Atmospheric Environment, 139, 20-29. http://dx.doi.org/10.1016/j.atmosenv.2016.05.016. PMid:27795692.

33 Lee, J., Nez, V. E., Feng, X., Kirchner, J. W., Osterhuber, R., & Renshaw, C. E. (2008). A study of solute redistribution and transport in seasonal snowpack using natural and artificial tracers. Journal of Hydrology, 357(3-4), 243-254. http://dx.doi.org/10.1016/j.jhydrol.2008.05.004.

34 Kleimeyer, J. A., Rose, P. E., & Harris, J. M. (2001). Determination of ultratrace-level fluorescent tracer concentrations in environmental samples using a combination of HPLC separation and laser-excited fluorescence multiwavelength emission detection: application to testing of geothermal well brines. Applied Spectroscopy, 55(6), 690-700. http://dx.doi.org/10.1366/0003702011952613.

35 Villela, J. M., Esteves Nogueira, A., Oliveira, C. R., & Crestana, S. (2017). Desenvolvimento de traçadores para identificação de fontes de sendimentos. In Anais do IX Workshop de Nanotecnologia Aplicada ao Agronegócio (pp. 645-648). São Carlos: Embrapa Instrumentação. Retrieved in 2021, January 7, from https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1081640/desenvolvimento-de-tracadores-para-identificacao-de-fontes-de-sendimentos

36 Ju, Y. J., Beaubien, S. E., Lee, S. S., Kaown, D., Hahm, D., Lee, S., Park, I. W., Park, K., Yun, S. T., & Lee, K. K. (2019). Application of natural and artificial tracers to constrain CO2 leakage and degassing in the K-COSEM site, South Korea. International Journal of Greenhouse Gas Control, 86, 211-225. http://dx.doi.org/10.1016/j.ijggc.2019.05.002.

37 Zemel, B. (1995). Tracers in the oil field. Burlington: Elsevier.

38 Guido, Z., McIntosh, J. C., Papuga, S. A., & Meixner, T. (2016). Seasonal glacial meltwater contributions to surface water in the Bolivian Andes: a case study using environmental tracers. Journal of Hydrology: Regional Studies, 8, 260-273. http://dx.doi.org/10.1016/j.ejrh.2016.10.002.

39 Serres-Piole, C., Preud’homme, H., Moradi-Tehrani, N., Allanic, C., Jullia, H., & Lobinski, R. (2012). Water tracers in oilfield applications: guidelines. Journal of Petroleum Science Engineering, 98-99, 22-39. http://dx.doi.org/10.1016/j.petrol.2012.08.009.

40 Hong, B., Panday, N., Shen, J., Wang, H. V., Gong, W., & Soehl, A. (2010). Modeling water exchange between Baltimore Harbor and Chesapeake Bay using artificial tracers: seasonal variations. Marine Environmental Research, 70(1), 102-119. http://dx.doi.org/10.1016/j.marenvres.2010.03.010. PMid:20409577.

41 Heilweil, V. M., Solomon, D. K., & Gardner, P. M. (2006). Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock. Vadose Zone Journal, 5(1), 98-120. http://dx.doi.org/10.2136/vzj2005.0002.

42 Geyer, T., Birk, S., Licha, T., Liedl, R., & Sauter, M. (2007). Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water, 45(1), 36-45. http://dx.doi.org/10.1111/j.1745-6584.2006.00261.x. PMid:17257337.

43 Sanford, W. E., Aeschbach-Hertig, W., & Herczeg, A. L. (2011). Preface: insights from environmental tracers in groundwater systems. Hydrogeology Journal, 19(1), 1-3. http://dx.doi.org/10.1007/s10040-010-0687-9.

44 Leibundgut, C., Maloszewski, P., & Kulls, C. (2009). Tracers in hydrology (1st ed.). Chichester: Wiley-Blackwell.

45 Brüschweiler, B. (2007). Markierstoffe im Bereich von Trinkwasserfassungen. Gas, Wasser, Abwasser, 87(5), 355-359. Retrieved in 2021, January 7, from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Markierstoffe+im+Bereich+von+Trinkwasserfassungen#0

46 Zhijiang, C., Cong, Z., Jie, G., Qing, Z., & Kongyin, Z. (2018). Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility. Materials Science and Engineering C, 82, 29-40. http://dx.doi.org/10.1016/j.msec.2017.08.005. PMid:29025660.

47 Cruz-Tato, P., Ortiz-Quiles, E. O., Vega-Figueroa, K., Santiago-Martoral, L., Flynn, M., Díaz-Vázquez, L. M., & Nicolau, E. (2017). Metalized nanocellulose composites as a feasible material for membrane supports: design and applications for water treatment. Environmental Science & Technology, 51(8), 4585-4595. http://dx.doi.org/10.1021/acs.est.6b05955. PMid:28318247.

48 Fujii, T., Yano, T., Nakamura, K., & Miyawaki, O. (2001). The sol-gel preparation and characterization of nanoporous silica membrane with controlled pore size. Journal of Membrane Science, 187(1–2), 171-180. http://dx.doi.org/10.1016/S0376-7388(01)00338-6.

49 Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1–2), 1-27. http://dx.doi.org/10.1016/j.memsci.2011.03.014.

50 Rojano-Molina, M. G., Domínguez-Díaz, M., Martinez-Valencia, H., Escorcia-García, J., & Balderas-Valadez, R. F. (2016). The hydrophilic to superhydrophilic change induced by polyhydroxybutyrate in polyethylene glycol:polyhydroxybutyrate electrospun samples by plasma treatment. MRS Advances, 1(29), 2125-2131. http://dx.doi.org/10.1557/adv.2016.423.

51 Ong, Y. T., Ahmad, A. L., Zein, S. H. S., Sudesh, K., & Tan, S. H. (2011). Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Separation and Purification Technology, 76(3), 419-427. http://dx.doi.org/10.1016/j.seppur.2010.11.013.

52 Lin, X., Li, S., Jung, J., Ma, W., Li, L., Ren, X., Sun, Y., & Huang, T. S. (2019). PHB/PCL fibrous membranes modified with SiO2@TiO2-based core@shell composite nanoparticles for hydrophobic and antibacterial applications. RSC Advances, 9(40), 23071-23080. http://dx.doi.org/10.1039/C9RA04465E.

53 Sousa, W. J. B., Barbosa, R. C., Fook, M. V. L., Filgueira, P. T. D., & Tomaz, A. F. (2017). Membranas de polihidroxibutirato com hidroxiapatita para utilização como biomaterial. Revista Materia, 22(4). http://dx.doi.org/10.1590/s1517-707620170004.0236.

54 Müller, D., Cercená, R., Gutiérrez Aguayo, A. J., Porto, L. M., Rambo, C. R., & Barra, G. M. O. (2016). Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. Journal of Materials Science Materials in Electronics, 27(8), 8062-8067. http://dx.doi.org/10.1007/s10854-016-4804-y.

55 Sabir, A., Islam, A., Shafiq, M., Shafeeq, A., Butt, M. T. Z., Ahmad, N. M., Sanaullah, K., & Jamil, T. (2015). Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination. Desalination, 368, 159-170. http://dx.doi.org/10.1016/j.desal.2014.12.041.

56 Varanasi, S., Low, Z. X., & Batchelor, W. (2015). Cellulose nanofibre composite membranes - Biodegradable and recyclable UF membranes. Chemical Engineering Journal, 265(1), 138-146. http://dx.doi.org/10.1016/j.cej.2014.11.085.

57 Lin, X., Yin, M., Liu, Y., Li, L., Ren, X., Sun, Y., & Huang, T. S. (2018). Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application. Journal of Industrial and Engineering Chemistry, 63, 303-311. http://dx.doi.org/10.1016/j.jiec.2018.02.031.

58 Karpova, S. G., Iordanskii, A. L., Popov, A. A., Lomakin, S. M., & Shilkina, N. G. (2015). A case study on biodegradable compositions based on natural polymers. In E. Klodzinska (Ed.), Functional materials: properties, performance and evaluation (pp. 235-247). New York: Apple Academic Press. https://doi.org/10.1201/b18183.

Reis, E. C. C., Borges, A. P. B., Oliveira, P. M., Bicalho, S. M. C. M., Reis, A. M., & Silva, C. L. (2012). Development and characterization of rigid, resorbable and osteoconductive membranes made of polyhydroxybutyrate and hydroxyapatite for periodontal regeneration. Polímeros: Ciência e Tecnologia, 22(1), 73-79. https://doi.org/10.1590/S0104-14282012005000007.

60 Venault, A., Subarja, A., & Chang, Y. (2017). Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth. Langmuir, 33(9), 2460-2471. http://dx.doi.org/10.1021/acs.langmuir.6b04683. PMid:28177247.

61 Karahaliloğlu, Z., Ercan, B., Taylor, E. N., Chung, S., Denkbaş, E. B., & Webster, T. J. (2015). Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. Journal of Biomedical Nanotechnology, 11(12), 2253-2263. http://dx.doi.org/10.1166/jbn.2015.2106. PMid:26510318.

62 Krucinska, I., Zywicka, B., Komisarczyk, A., Szymonowicz, M., Kowalska, S., Zaczynska, E., Struszczyk, M., Czarny, A., Jadczyk, P., Uminska-Wasiluk, B., Rybak, Z., & Kowalczuk, M. (2017). Biological properties of low-toxicity PLGA and PLGA/PHB fibrous nanocomposite implants for osseous tissue regeneration. Part I: evaluation of potential biotoxicity. Molecules, 22(12), 1-25. http://dx.doi.org/10.3390/molecules22122092. PMid:29186078.

63 Ma, B., Jin, M., Liang, X., & Li, J. (2018). Processus de mélange et de minéralisation des eaux souterraines dans un bassin désertique montagneux avec des oasis, dans le nord-ouest de la Chine: hydrogéochimie et indicateurs de traceurs environnementaux. Hydrogeology Journal, 26(1), 233-250. http://dx.doi.org/10.1007/s10040-017-1659-0.

64 Salehi, E., Madaeni, S. S., & Heidary, F. (2012). Dynamic adsorption of Ni(II) and Cd(II) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane: Isotherms, thermodynamics and kinetics. Separation and Purification Technology, 94, 1-8. http://dx.doi.org/10.1016/j.seppur.2012.04.004.

65 Villegas, M., Romero, A. I., Parentis, M. L., Castro Vidaurre, E. F., & Gottifredi, J. C. (2016). Acrylic acid plasma polymerized poly(3-hydroxybutyrate) membranes for methanol/MTBE separation by pervaporation. Chemical Engineering Research & Design, 109, 234-248. http://dx.doi.org/10.1016/j.cherd.2016.01.018.

66 Esposito, A. R., Duek, E. A. R., Lucchesi, C., Prazeres, L., & Pezzin, A. P. T. (2010). Citocompatibilidade de blendas de poli(p-dioxanona)/poli(hidroxi butirato) (PPD/PHB) para aplicações em engenharia de tecido cartilaginoso. Polímeros, 20(5), 383-388. http://dx.doi.org/10.1590/S0104-14282010005000062.

67 Gredes, T., Wróbel-Kwiatkowska, M., Dominiak, M., Gedrange, T., & Kunert-Keil, C. (2012). Osteogenic capacity of transgenic flax scaffolds. Biomedizinische Technik, 57(1), 53-58. http://dx.doi.org/10.1515/bmt-2011-0035. PMid:22718592.

68 Çatıker, E., Stakleff, K. S., Carr, K. B., & Sancaktar, E. (2016). Laser-perforated polymer films for possible use in tissue engineering. Surface Innovations, 4(1), 23-32. http://dx.doi.org/10.1680/jsuin.15.00019.

69 Jiang, B., Zheng, J., Lu, X., Liu, Q., Wu, M., Yan, Z., Qiu, S., Xue, Q., Wei, Z., Xiao, H., & Liu, M. (2013). Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers. Chemical Engineering Journal, 215–216, 969-978. http://dx.doi.org/10.1016/j.cej.2012.11.046.

70 Tematio, C., Bassas-Galia, M., Fosso, N., Gaillard, V., Mathieu, M., Zinn, M., Staderini, E., & Schintke, S. (2016). Design and characterization of conductive biopolymer nanocomposite electrodes for medical applications. Materials Science Forum, 879, 1921-1926. http://dx.doi.org/10.4028/www.scientific.net/MSF.879.1921.

71 Schettini, E., Santagata, G., Malinconico, M., Immirzi, B., Scarascia Mugnozza, G., & Vox, G. (2013). Recycled wastes of tomato and hemp fibres for biodegradable pots: physico-chemical characterization and field performance. Resources, Conservation and Recycling, 70, 9-19. http://dx.doi.org/10.1016/j.resconrec.2012.11.002.

72 Zhijiang, C., Cong, Z., Ping, X., Jie, G., & Kongyin, Z. (2018). Calcium alginate-coated electrospun polyhydroxybutyrate/carbon nanotubes composite nanofibers as nanofiltration membrane for dye removal. Journal of Materials Science, 53(20), 14801-14820. http://dx.doi.org/10.1007/s10853-018-2607-7.

73 Zhang, Y., Price, G. W., Jamieson, R., Burton, D., & Khosravi, K. (2017). Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Chemosphere, 174, 628-637. http://dx.doi.org/10.1016/j.chemosphere.2017.02.027. PMid:28199939.

74 Sengupta, I. N. (1992). Bibliometrics, informetrics, scientometrics and librametrics: an overview. Libri, 42(2), 75-98. http://dx.doi.org/10.1515/libr.1992.42.2.75.

75 Café, L., & Bräscher, M. (2008). Organização da informação e bibliometria. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência Da Informação, 13, 54-75.

76 Araujo, A. S., & Azevedo, D. C. S. (2004). Fundamentos de adsorção. In Anais do 5º Encontro Brasileiro Sobre Adsorção. Natal.

77 Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629-635. http://dx.doi.org/10.1016/j.joi.2010.07.002.

78 Yu, D., Wang, W., Zhang, W., & Zhang, S. (2018). A bibliometric analysis of research on multiple criteria decision making. Current Science, 114(4), 747-758. http://dx.doi.org/10.18520/cs/v114/i04/747-758.

79 van Eck, N. J., Waltman, L., Dekker, R., & van Den Berg, J. (2010). A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. Journal of the American Society for Information Science and Technology, 61(12), 2405-2416. http://dx.doi.org/10.1002/asi.21421.

80 Martínez-López, F. J., Merigó, J. M., Valenzuela-Fernández, L., & Nicolás, C. (2018). Fifty years of the European Journal of Marketing: a bibliometric analysis. European Journal of Marketing, 52(1-2), 439-468. http://dx.doi.org/10.1108/EJM-11-2017-0853.

81 Echeverry, S. M., & Marques, A. (2019). Integrated LCA and GIS in the energy sector: a bibliographic approach. Revista Espaço Energia, 31, 12-16.

82 Guo, Y. M., Huang, Z. L., Guo, J., Li, H., Guo, X. R., & Nkeli, M. J. (2019). Bibliometric analysis on smart cities research. Sustainability, 11(13), 3606. http://dx.doi.org/10.3390/su11133606.

83 Pan, X., Yan, E., Cui, M., & Hua, W. (2018). Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. Journal of Informetrics, 12(2), 481-493. http://dx.doi.org/10.1016/j.joi.2018.03.005.

84 Aghaei, A., Salehi, H., Md Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: web of science and scopus databases. Asian Social Science, 9(5), 18-26. http://dx.doi.org/10.5539/ass.v9n5p18.

85 Gruber, W., & Deuticke, B. (1973). Comparative aspects of phosphate transfer across mammalian erythrocyte membranes. The Journal of Membrane Biology, 13(1), 19-36. http://dx.doi.org/10.1007/BF01868218. PMid:4752450.

86 Reide Corbett, D., Dillon, K., & Burnett, W. (2000). Tracing groundwater flow on a barrier island in the north-east Gulf of Mexico. Estuarine, Coastal and Shelf Science, 51(2), 227-242. http://dx.doi.org/10.1006/ecss.2000.0606.

87 Dzikowski, M., & Delay, F. (1992). Simulation algorithm of time-dependent tracer test systems in hydrogeology. Computers & Geosciences, 18(6), 697-705. http://dx.doi.org/10.1016/0098-3004(92)90004-B.

88 World Health Organization – WHO. (2004). Fourth Ministerial Conference on Environment and Health. Geneva.

89 Dao, V., Langella, I., & Carbo, J. (2011). From green to sustainability: information Technology and an integrated sustainability framework. The Journal of Strategic Information Systems, 20(1), 63-79. http://dx.doi.org/10.1016/j.jsis.2011.01.002.

90 Hillebrand, O., Nödler, K., Licha, T., Sauter, M., & Geyer, T. (2012). Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine. Water Research, 46(16), 5381-5388. http://dx.doi.org/10.1016/j.watres.2012.07.032. PMid:22877878.

91 Zhang, S. F., Splendiani, A., Santos, L. M. F., & Livingston, A. G. (1998). Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor. Biotechnology and Bioengineering, 59(1), 80-89. http://dx.doi.org/10.1002/(SICI)1097-0290(19980705)59:1<80::AID-BIT11>3.0.CO;2-6. PMid:10099317.

92 Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861-873. http://dx.doi.org/10.1016/j.joi.2013.08.006.

93 Organisation for Economic Co-operation and Development – OCDE. (2020). Research and development (R&D): gross domestic spending on R&D. Retrieved in 2021, January 7, from http://data.oecd.org/rd/gross-domesticspending-on-r-d.htm

94 Zharkova, I. I., Efremov, Y. M., Bagrov, D. V., Zernov, A. L., Andreeva, N. V., Shaitan, K. V., Bonartsev, A. P., Boschomjiev, A. P., Makhina, T. K., Myshkina, V. L., Voinova, V. V., Yakovlev, S. G., Filatova, E. V., Ivanov, E. A., & Bonartseva, G. A. (2012). The effect of poly(3-hydroxybutyrate) modification by poly(ethylene glycol) on the viability of cells grown on the polymer films. Biomeditsinskaya Khimiya, 58(5), 579-591. http://dx.doi.org/10.18097/pbmc20125805579. PMid:23289300.

95 Kunert-Keil, C., Gredes, T., Meyer, A., Wróbel-Kwiatkowska, M., Dominiak, M., & Gedrange, T. (2012). The survival and proliferation of fibroblasts on biocomposites containing genetically modified flax fibers: an in vitro study. Annals of Anatomy, 194(6), 513-517. http://dx.doi.org/10.1016/j.aanat.2011.12.006. PMid:22377281.

96 Yan, L., Kasal, B., & Huang, L. (2016). A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites. Part B, Engineering, 92, 94-132. http://dx.doi.org/10.1016/j.compositesb.2016.02.002.

97 Van-Eck, N. J., & Waltman, L. (2017). Manual for VOSviewer versión 1.6.6. Leiden: Universiteit Leiden.

98 Elliot, T. (2014). Environmental tracers. Water, 6(11), 3264-3269. http://dx.doi.org/10.3390/w6113264.

60a7a8cfa953955ccb4d8a13 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections