Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.00219
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of antimicrobial action of silver composite microspheres based on styrene-divinylbenzene copolymer

Maria Aparecida Larrubia Granado Moreira Rodrigues Mandu; Luciana da Cunha Costa; Rodrigo Bernardes Tiosso; Rômulo Pires Grasso; Mônica Regina da Costa Marques Calderari

Downloads: 0
Views: 957

Abstract

This article reports the evaluation of the antimicrobial activity of a silver composite based on sulfonic resin. The antimicrobial action of the composite was evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus through plate, batch and colunm experiments. In batch studies, the efficiency of the composite was evaluated as a function of composite mass, bacterial concentration and contact time. We also developed a method to evaluate the antimicrobial activity of this composite using column tests. The antimicrobial activity of the composite was similar against the three bacteria in halo inhibition and batch experiments. The antibacterial activity was 100% against all bacteria above 0.20 g of composite and for all concentrations of bacteria studied. Column studies showed that the composite (1 g) had 100% action against 48 cm3 of S. aureus and 55 cm3 of E. coli and P. aeruginosa suspensions (105 cells mL-1, 50 cm3 min-1).

Keywords

biocidal polymers, styrene-divinylbenzene copolymers, sulfonic resins, silver composites.

References

1 Munoz-Bonilla, A., & Fernández-Garcia, M. (2018). Poly(ionic liquid)s as antimicrobial materials. European Polymer Journal105(1), 135-149. http://dx.doi.org/10.1016/j.eurpolymj.2018.05.027

2 Munoz-Bonilla, A., & Fernández-Garcia, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science37(2), 281-339. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.005

3 Costa, L. C., Mandu, M. A. L. G. M. R., Santa Maria, L. C., & Marques, M. R. C. (2015). Resinas poliméricas reticuladas com ação biocida: atual estado da arte. Polímeros: Ciencia e Tecnologia25(4), 414-423. http://dx.doi.org/10.1590/0104-14281739

4 Kawabata, N. (1992). Capture of micro-organisms and viruses by pyridinium-type polymers and application to biotechnology and water purification. Progress in Polymer Science17(1), 1-34. http://dx.doi.org/10.1016/0079-6700(92)90015-Q

5 Souza, M. A. V., Santa Maria, L. C., Costa, L. C., Galvão, R. C., Hui, W. S., & Merçon, F. (2012). Evaluation of the biocide activity of phosphorylated and sulfophosphorylated resins. Materials Letters74(1), 121-124. http://dx.doi.org/10.1016/j.matlet.2012.01.093

6 Jing, Z., Xiu, K., Ren, X., & Sun, Y. (2018). Cationic polymeric N-halamines bind onto biofilms and inactivate adherent bacteria. Colloids and Surfaces. B, Biointerfaces166(1), 210-217. http://dx.doi.org/10.1016/j.colsurfb.2018.03.028. PMid:29597154. 

7 Saeki, D., Nagashima, Y., Sawada, I., & Matsuyama, H. (2016). Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids and Surfaces A, Physicochemical and Engineering Aspects506(1), 622-628. http://dx.doi.org/10.1016/j.colsurfa.2016.07.036

8 Aguiar, M. A., Souza, A. L. F., Galdino, F. S., Silva, M. M. C., Teixeira, V. G., & Lachter, E. R. (2017). Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids. Renewable Energy114, 725-732. http://dx.doi.org/10.1016/j.renene.2017.07.084

9 Pinto, M. C. C., Souza, N. L. S., Cipolatti, E. P., Fernandez-Lafuente, R., Manoel, E. A., Freire, D. M. G., & Pinto, J. C. (2019). Effects of reaction operation policies on properties of core-shell polymer supports used for preparation of highly active biocatalysts. Macromolecular Reaction Engineering13(1), 1800055. http://dx.doi.org/10.1002/mren.201800055

10 Shakerian, F., Kim, K.-H., Kwon, E., Szulejko, J. E., Kumar, P., Dadfarnia, S., & Haji Shabani, A. M. (2016). Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends in Analytical Chemistry83, 55-69. http://dx.doi.org/10.1016/j.trac.2016.08.001

11 Castanharo, J. A., Ferreira, I. L. M., Silva, M. R., & Costa, M. A. (2018). Core-shell magnetic particles obtained by seeded suspension polymerization of acrylic monomers. Polímeros Ciência e Tecnologia28(5), 460-467. http://dx.doi.org/10.1590/0104-1428.10517

12 Castanharo, J. A., Ferreira, I. L. M., Costa, M. A. S., Silva, M. R., Costa, G. M., & Oliveira, M. G. (2015). Magnetic microspheres based on poly(divinylbenzene-co-methyl methacrylate) obtained by suspension polymerization. Polímeros: Ciência e Tecnologia25(2), 192-199. http://dx.doi.org/10.1590/0104-1428.1666.

13 Souza, F. S., Costa, M. A. S., Maria, L. C. S., Mello, I. L., Silva, M. R., & Wang, S. H. (2013). Síntese e caracterização de copolímeros reticulados à base de estireno, divinilbenzeno e metacrilato de metila com propriedades magnéticas. Polímeros: Ciência e Tecnologia23(1), 82-90. http://dx.doi.org/10.1590/S0104-14282013005000004

14 Simplicio, S., Lucas, E. F., Costa, M. A. S., Costa, L. C., & Santa Maria, L. C. (2014). Thermal resistance of magnetic polymeric composites based on styrene, divinylbenzene, and Ni and Co particles. Journal of Thermal Analysis and Calorimetry117(1), 369-375. http://dx.doi.org/10.1007/s10973-014-3703-9

15 Simplício, S., Maria, L. C. S., Costa, M. A. S., Lucas, E. F., Queirós, Y. G. C., Marques, L. R. S., Costa, L. C., Hui, W. S., & Silva, M. R. (2013). Removal of phenol from aqueous solutions by polymeric composites containing Ni and Co particles. Polímeros: Ciência e Tecnologia23(5), 590-596. http://dx.doi.org/10.4322/polimeros.2013.092.

16 Evaristo, A. A. A., Santos, K. C. R., Costa, L. C., & Marques, M. R. C. (2013). Evaluation of ion exchange resins for recovery of metals from electroplating sludge. Polymer Bulletin70(8), 2239-2255. http://dx.doi.org/10.1007/s00289-013-0944-x

17 Valle, A. S. S., Marques, M. R. C., Costa, L. C., Maria, L. C. S., Aguiar, A. P., & Merçon, F. (2013). Evaluation of bactericidal action of 2-vinylpiridine copolymers containing quaternary ammonium groups and their charge transfer complexes. Polímeros Ciência e Tecnologia23(2), 152-160. http://dx.doi.org/10.1590/S0104-14282013005000023

18 Costa, L. C., Marques, M. R. C., Tiosso, R. B., Cantarim, J. P., & Merçon, F. (2012). Evaluation of the biocidal activity of hypercrosslinked resins containing dithiocarbamate groups. Macromolecular Symposia319(1), 121-128. http://dx.doi.org/10.1002/masy.201100175

19 Valle, A. S. S., Costa, L. C., Marques, M. R. C., Silva, C. L. P., Maria, L. C. S., Merçon, F., & Aguiar, A. P. (2011). Preparação de copolímeros à base de 2-vinilpiridina com propriedades bactericidas. Quimica Nova34(4), 577-583. http://dx.doi.org/10.1590/S0100-40422011000400005.

20 Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K. M., & Anand, P. S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research44(18), 5481-5487. http://dx.doi.org/10.1016/j.watres.2010.06.057. PMid:20673945.

21 Santa Maria, L. C., Oliveira, R. O., Mercon, F., Borges, M. E. R. S. P., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y., & Wang, S. H. (2010). Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polímeros: Ciência e Tecnologia20(3), 227-230. http://dx.doi.org/10.1590/S0104-14282010005000028

22 Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (I): preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. Reactive & Functional Polymers68(1), 248-260. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.09.004.

1 23Jandrey, A. C., Aguiar, A. P., Aguiar, M. R. M. P., Santa Maria, L. C., Mazzei, J. L., & Felzenszwalb, I. (2007). Iodine-poly(2-vinylpyridine-co-styrene-co-divinylbenzene) charge transfer complexes with antibacterial activity. European Polymer Journal43(11), 4712-4718. http://dx.doi.org/10.1016/j.eurpolymj.2007.07.042

24 Yee, M. S.-L., Khiew, P. S., Tan, Y. F., Kok, Y.-Y., Cheong, K. W., Chiu, W. S., & Leong, C.-O. (2014). Potent antifouling silver-polymer nanocomposite microspheres using ion-exchange resin as templating matrix. Colloids and Surfaces A, Physicochemical and Engineering Aspects457(1), 382-391. http://dx.doi.org/10.1016/j.colsurfa.2014.06.010

25 Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research47(12), 3931-3946. http://dx.doi.org/10.1016/j.watres.2012.09.058. PMid:23571110. 

26 Mthombeni, N. H., Mpenyana-Monyatsi, L., Onyango, M. S., & Momba, M. N. B. (2012). Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. Journal of Hazardous Materials, 217-218(1), 133-140. http://dx.doi.org/10.1016/j.jhazmat.2012.03.004. PMid:22459979. 

27 Kamrupi, I. R., Phukon, P., Konwer, B. K., & Dolui, S. K. (2011). Synthesis of silver-polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. The Journal of Supercritical Fluids55(3), 1089-1094. http://dx.doi.org/10.1016/j.supflu.2010.09.027

28 Denyer, S., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation41(3-4), 261-268. http://dx.doi.org/10.1016/S0964-8305(98)00023-7

29 Popa, A., Davidescu, C. M., Trif, R., Ilia, G., Iliescu, S., & Dehelean, G. (2003). Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene-divinylbenzene copolymers. Reactive & Functional Polymers55(2), 151-158. http://dx.doi.org/10.1016/S1381-5148(02)00224-9

30 Liang, J., Chen, Y., Barnes, K., Wu, R., Worley, S. D., & Huang, T. S. (2006). N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials27(11), 2495-2501. http://dx.doi.org/10.1016/j.biomaterials.2005.11.020. 

31 Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology73(6), 1712-1720. http://dx.doi.org/10.1128/AEM.02218-06. PMid:17261510. 

32 Thiel, J., Pakstis, L., Buzby, S., Raffi, M., Ni, C., Pochan, D. J. & Shah, S. I. (2007). Antibacterial Properties of Silver-Doped Titania. Nano Micro Small , 3(5), 799-803. https://doi.org/1.1002/smll.200600481 https://doi.org/1.1002/smll.200600481 

5eb2edb80e88252b25d76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections