Evaluation of antimicrobial action of silver composite microspheres based on styrene-divinylbenzene copolymer
Maria Aparecida Larrubia Granado Moreira Rodrigues Mandu; Luciana da Cunha Costa; Rodrigo Bernardes Tiosso; Rômulo Pires Grasso; Mônica Regina da Costa Marques Calderari
Abstract
Keywords
References
1 Munoz-Bonilla, A., & Fernández-Garcia, M. (2018). Poly(ionic liquid)s as antimicrobial materials. European Polymer Journal, 105(1), 135-149. http://dx.doi.org/10.1016/j.eurpolymj.2018.05.027.
2 Munoz-Bonilla, A., & Fernández-Garcia, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. http://dx.doi.org/10.1016/j.progpolymsci.2011.08.005.
3 Costa, L. C., Mandu, M. A. L. G. M. R., Santa Maria, L. C., & Marques, M. R. C. (2015). Resinas poliméricas reticuladas com ação biocida: atual estado da arte. Polímeros: Ciencia e Tecnologia, 25(4), 414-423. http://dx.doi.org/10.1590/0104-14281739.
4 Kawabata, N. (1992). Capture of micro-organisms and viruses by pyridinium-type polymers and application to biotechnology and water purification. Progress in Polymer Science, 17(1), 1-34. http://dx.doi.org/10.1016/0079-6700(92)90015-Q.
5 Souza, M. A. V., Santa Maria, L. C., Costa, L. C., Galvão, R. C., Hui, W. S., & Merçon, F. (2012). Evaluation of the biocide activity of phosphorylated and sulfophosphorylated resins. Materials Letters, 74(1), 121-124. http://dx.doi.org/10.1016/j.matlet.2012.01.093.
6 Jing, Z., Xiu, K., Ren, X., & Sun, Y. (2018). Cationic polymeric N-halamines bind onto biofilms and inactivate adherent bacteria. Colloids and Surfaces. B, Biointerfaces, 166(1), 210-217. http://dx.doi.org/10.1016/j.colsurfb.2018.03.028. PMid:29597154.
7 Saeki, D., Nagashima, Y., Sawada, I., & Matsuyama, H. (2016). Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 506(1), 622-628. http://dx.doi.org/10.1016/j.colsurfa.2016.07.036.
8 Aguiar, M. A., Souza, A. L. F., Galdino, F. S., Silva, M. M. C., Teixeira, V. G., & Lachter, E. R. (2017). Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids. Renewable Energy, 114, 725-732. http://dx.doi.org/10.1016/j.renene.2017.07.084.
9 Pinto, M. C. C., Souza, N. L. S., Cipolatti, E. P., Fernandez-Lafuente, R., Manoel, E. A., Freire, D. M. G., & Pinto, J. C. (2019). Effects of reaction operation policies on properties of core-shell polymer supports used for preparation of highly active biocatalysts. Macromolecular Reaction Engineering, 13(1), 1800055. http://dx.doi.org/10.1002/mren.201800055.
10 Shakerian, F., Kim, K.-H., Kwon, E., Szulejko, J. E., Kumar, P., Dadfarnia, S., & Haji Shabani, A. M. (2016). Advanced polymeric materials: synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends in Analytical Chemistry, 83, 55-69. http://dx.doi.org/10.1016/j.trac.2016.08.001.
11 Castanharo, J. A., Ferreira, I. L. M., Silva, M. R., & Costa, M. A. (2018). Core-shell magnetic particles obtained by seeded suspension polymerization of acrylic monomers. Polímeros Ciência e Tecnologia, 28(5), 460-467. http://dx.doi.org/10.1590/0104-1428.10517.
12 Castanharo, J. A., Ferreira, I. L. M., Costa, M. A. S., Silva, M. R., Costa, G. M., & Oliveira, M. G. (2015). Magnetic microspheres based on poly(divinylbenzene-co-methyl methacrylate) obtained by suspension polymerization. Polímeros: Ciência e Tecnologia, 25(2), 192-199. http://dx.doi.org/10.1590/0104-1428.1666.
13 Souza, F. S., Costa, M. A. S., Maria, L. C. S., Mello, I. L., Silva, M. R., & Wang, S. H. (2013). Síntese e caracterização de copolímeros reticulados à base de estireno, divinilbenzeno e metacrilato de metila com propriedades magnéticas. Polímeros: Ciência e Tecnologia, 23(1), 82-90. http://dx.doi.org/10.1590/S0104-14282013005000004.
14 Simplicio, S., Lucas, E. F., Costa, M. A. S., Costa, L. C., & Santa Maria, L. C. (2014). Thermal resistance of magnetic polymeric composites based on styrene, divinylbenzene, and Ni and Co particles. Journal of Thermal Analysis and Calorimetry, 117(1), 369-375. http://dx.doi.org/10.1007/s10973-014-3703-9.
15 Simplício, S., Maria, L. C. S., Costa, M. A. S., Lucas, E. F., Queirós, Y. G. C., Marques, L. R. S., Costa, L. C., Hui, W. S., & Silva, M. R. (2013). Removal of phenol from aqueous solutions by polymeric composites containing Ni and Co particles. Polímeros: Ciência e Tecnologia, 23(5), 590-596. http://dx.doi.org/10.4322/polimeros.2013.092.
16 Evaristo, A. A. A., Santos, K. C. R., Costa, L. C., & Marques, M. R. C. (2013). Evaluation of ion exchange resins for recovery of metals from electroplating sludge. Polymer Bulletin, 70(8), 2239-2255. http://dx.doi.org/10.1007/s00289-013-0944-x.
17 Valle, A. S. S., Marques, M. R. C., Costa, L. C., Maria, L. C. S., Aguiar, A. P., & Merçon, F. (2013). Evaluation of bactericidal action of 2-vinylpiridine copolymers containing quaternary ammonium groups and their charge transfer complexes. Polímeros Ciência e Tecnologia, 23(2), 152-160. http://dx.doi.org/10.1590/S0104-14282013005000023.
18 Costa, L. C., Marques, M. R. C., Tiosso, R. B., Cantarim, J. P., & Merçon, F. (2012). Evaluation of the biocidal activity of hypercrosslinked resins containing dithiocarbamate groups. Macromolecular Symposia, 319(1), 121-128. http://dx.doi.org/10.1002/masy.201100175.
19 Valle, A. S. S., Costa, L. C., Marques, M. R. C., Silva, C. L. P., Maria, L. C. S., Merçon, F., & Aguiar, A. P. (2011). Preparação de copolímeros à base de 2-vinilpiridina com propriedades bactericidas. Quimica Nova, 34(4), 577-583. http://dx.doi.org/10.1590/S0100-40422011000400005.
20 Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K. M., & Anand, P. S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection. Water Research, 44(18), 5481-5487. http://dx.doi.org/10.1016/j.watres.2010.06.057. PMid:20673945.
21 Santa Maria, L. C., Oliveira, R. O., Mercon, F., Borges, M. E. R. S. P., Barud, H. S., Ribeiro, S. J. L., Messaddeq, Y., & Wang, S. H. (2010). Preparation and bactericidal effect of composites based on crosslinked copolymers containing silver nanoparticles. Polímeros: Ciência e Tecnologia, 20(3), 227-230. http://dx.doi.org/10.1590/S0104-14282010005000028.
22 Ahmed, A. E. I., Hay, J. N., Bushell, M. E., Wardell, J. N., & Cavalli, G. (2008). Biocidal polymers (I): preparation and biological activity of some novel biocidal polymers based on uramil and its azo-dyes. Reactive & Functional Polymers, 68(1), 248-260. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.09.004.
1 23Jandrey, A. C., Aguiar, A. P., Aguiar, M. R. M. P., Santa Maria, L. C., Mazzei, J. L., & Felzenszwalb, I. (2007). Iodine-poly(2-vinylpyridine-co-styrene-co-divinylbenzene) charge transfer complexes with antibacterial activity. European Polymer Journal, 43(11), 4712-4718. http://dx.doi.org/10.1016/j.eurpolymj.2007.07.042.
24 Yee, M. S.-L., Khiew, P. S., Tan, Y. F., Kok, Y.-Y., Cheong, K. W., Chiu, W. S., & Leong, C.-O. (2014). Potent antifouling silver-polymer nanocomposite microspheres using ion-exchange resin as templating matrix. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 457(1), 382-391. http://dx.doi.org/10.1016/j.colsurfa.2014.06.010.
25 Qu, X., Alvarez, P. J. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946. http://dx.doi.org/10.1016/j.watres.2012.09.058. PMid:23571110.
26 Mthombeni, N. H., Mpenyana-Monyatsi, L., Onyango, M. S., & Momba, M. N. B. (2012). Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. Journal of Hazardous Materials, 217-218(1), 133-140. http://dx.doi.org/10.1016/j.jhazmat.2012.03.004. PMid:22459979.
27 Kamrupi, I. R., Phukon, P., Konwer, B. K., & Dolui, S. K. (2011). Synthesis of silver-polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. The Journal of Supercritical Fluids, 55(3), 1089-1094. http://dx.doi.org/10.1016/j.supflu.2010.09.027.
28 Denyer, S., & Stewart, G. S. A. B. (1998). Mechanisms of action of disinfectants. International Biodeterioration & Biodegradation, 41(3-4), 261-268. http://dx.doi.org/10.1016/S0964-8305(98)00023-7.
29 Popa, A., Davidescu, C. M., Trif, R., Ilia, G., Iliescu, S., & Dehelean, G. (2003). Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene-divinylbenzene copolymers. Reactive & Functional Polymers, 55(2), 151-158. http://dx.doi.org/10.1016/S1381-5148(02)00224-9.
30 Liang, J., Chen, Y., Barnes, K., Wu, R., Worley, S. D., & Huang, T. S. (2006). N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials, 27(11), 2495-2501. http://dx.doi.org/10.1016/j.biomaterials.2005.11.020.
31 Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. http://dx.doi.org/10.1128/AEM.02218-06. PMid:17261510.
32 Thiel, J., Pakstis, L., Buzby, S., Raffi, M., Ni, C., Pochan, D. J. & Shah, S. I. (2007). Antibacterial Properties of Silver-Doped Titania. Nano Micro Small , 3(5), 799-803. https://doi.org/1.1002/smll.200600481 https://doi.org/1.1002/smll.200600481