Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Influence of Prosopis Juliflora wood flour in Poly Lactic Acid – Developing a novel Bio-Wood Plastic Composite

Sachin Sumathy Raj; Thanneerpanthalpalayam Kandasamy Kannan; Rathanasamy Rajasekar

Downloads: 0
Views: 238


A Bio composite comprising Prosopis Juliflora Fiber (PJF) and Poly Lactic Acid (PLA) was processed considering two particulate sized reinforcements, coarse PJF (avg. 15 µm) and fine PJF (10-50 nm). They were added individually at ratios of 10, 15, 20 and 25 wt% into PLA matrix. The composites were extruded and tested for mechanical properties. The addition of PJF resulted with an increase in the tensile, flexural and impact strengths of the polymer. Adding PJF to PLA showed a decrease in the hardness of the polymer. Water Absorption test showed an increase in water uptake with increasing fiber content. The most optimum ratio of PLA to PJF was found to be 80:20. The fine PJF reinforced composites proved to be superior over the coarse PJF reinforced composites at all stages of the research. FESEM and TGA were used to study morphology and thermal characteristics respectively.



biocomposite material, poly lactic acid, prosopis juliflora, wood flour, wood plastic composite


1 Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. http://dx.doi.org/10.1016/j.biortech.2010.05.092. PMid:20630747.

2 Sykacek, E., Hrabalova, M., Frech, H., & Mundigler, N. (2009). Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Composites. Part A, Applied Science and Manufacturing, 40(8), 1272-1282. http://dx.doi.org/10.1016/j.compositesa.2009.05.023.

3 Mofokeng, J. P., Luyt, A. S., Tabi, T., & Kovacs, J. (2011). Comparison of injection moulded, natural fiber composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. http://dx.doi.org/10.1177/0892705711423291.

4 Siakeng, R., Jawaid, M., Ariffin, H., Sapuan, S. M., Asim, M., & Saba, N. (2018). Natural fiber reinforced Polylactic acid composites: A Review. Polymer Composites, 40(2), 446-463. http://dx.doi.org/10.1002/pc.24747.

5 Garlotta, D. (2001). A literature review of Poly(Lactic Acid). Journal of Polymers and the Environment, 9(2), 63-84. http://dx.doi.org/10.1023/A:1020200822435.

6 Manimaran, P., Senthamaraikannan, P., Sanjay, M. R., & Barile, C. (2017). Comparison of fibres properties of Azarirachta Indica and Acacia Arabica plant for light weight composite applications. Structural Integrity and Life, 18(1), 37-43.

7 Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis Juliflora bark. Carbohydrate Polymers, 92(2), 1928-1933. http://dx.doi.org/10.1016/j.carbpol.2012.11.064. PMid:23399239.

8 Tribot, A., Amer, G., Abdou, A. M., Baynast, D. H., Delattre, C., Pons, A., Mathias, J. D., Callois, J. M., Vial, C., Michaud, P., & Dussap, C. G. (2019). Wood lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal, 112, 228-240. http://dx.doi.org/10.1016/j.eurpolymj.2019.01.007.

9 Matuana, L. M., & Stark, N. M. (2015). The use of wood fibers as reinforcements in composites. In F. Omar & S. Mohini (Eds.), Biofiber reinforcement in composite materials. (pp. 648-688). United Kingdom: Elsevier. http://dx.doi.org/10.1533/9781782421276.5.648

10 Shimpi, N. G. (2018). Biodegradable and Biocomposite material. United Kingdom: Elsevier.

11 Petchwattana, N., & Covavisaruch, S. (2014). Mechanical and morphological properties of wood plastic biocomposites prepared from toughened Poly(lacticacid) and rubber wood sawdust (Hevea brasiliensis). Journal of Bionics Engineering, 11(4), 630-637. http://dx.doi.org/10.1016/S1672-6529(14)60074-3.

12 Wan, L., & Zhang, Y. (2018). Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF. Journal of the Mechanical Behavior of Biomedical Materials, 88, 223-230. http://dx.doi.org/10.1016/j.jmbbm.2018.08.016. PMid:30193180.

13 Guo, R., Ren, Z., Bi, H., Song, Y., & Xu, M. (2018). Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with Fused Deposition Modeling. European Polymer Journal, 107, 34-45. http://dx.doi.org/10.1016/j.eurpolymj.2018.07.035.

14 Huda, M. S., Drzal, L. T., Misra, M., & Mohanty, A. K. (2006). Wood-fiber-reinforced Poly(lactic acid) Composites: evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science, 102(5), 4856-4869. http://dx.doi.org/10.1002/app.24829.

15 Lee, S.-H., & Wang, S. (2006). Biodegradable polymers/bamboo fiber bio composite with bio-based coupling agent. Composites. Part A, Applied Science and Manufacturing, 37(1), 80-91. http://dx.doi.org/10.1016/j.compositesa.2005.04.015.

16 Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-Pine wood flour composites. Polymer Engineering and Science, 48(3), 578-587. http://dx.doi.org/10.1002/pen.20971.

17 Sawpan, M. A., Pickering, K. L., & Fernyhough, A. (2011). Improvement of Mechanical performance of industrial hemp fiber reinforced polylactide biocomposite. Composites. Part A, Applied Science and Manufacturing, 42(3), 310-319. http://dx.doi.org/10.1016/j.compositesa.2010.12.004.

18 Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preperation and characterization of poly lactic acid plasticized with vegetable oils and reinforced with sisal fiber. Industrial Crops and Products, 112, 170-180. http://dx.doi.org/10.1016/j.indcrop.2017.11.011.

19 Fan, C., Yang, D., Wang, H., Sun, Y., Lou, H., & Yang, H. (2016). Research on preperation methods of ultrafine softwood powder. International Journal of u- and e- service. Science and Technology, 9(4), 225-234. http://dx.doi.org/10.14257/ijunesst.2016.9.4.23.

20 Mazzanti, V., & Mollica, F. (2017). Rheology of wood flour filled Poly(lactic acid). In Third International Conference on Natural Fibers: Advanced Materials for a Greener World (pp. 61-67). Braga, Portugal: Curran Associates, Inc. http://dx.doi.org/10.1016/j.proeng.2017.07.010.

21 Chandramohan, D., & John Presin Kumar, A. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460-468. http://dx.doi.org/10.1016/j.dib.2017.06.020. PMid:28702485.

22 Sachin, S. R., Kannan, T. K., & Rajasekar, S. (2020). Effect of wood particulate size on the mechanical properties of PLA biocomposite. Pigment & Resin Technology, in press. http://dx.doi.org/10.1108/PRT-12-2019-0117.

23 Yaacob, N. D., Ismail, H., & Ting, S. S. (2016). Soil burial of Polylactic acid/Paddy straw powder Biocomposite. BioResources, 11(1), 1255-1269. http://dx.doi.org/10.15376/biores.11.1.1255-1269.

24 Tisserat, B., Joshee, N., Mahapatra, A. K., Selling, G. W., & Finkenstadt, V. L. (2013). Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongate biocomposites. Industrial Crops and Products, 44, 88-96. http://dx.doi.org/10.1016/j.indcrop.2012.10.030.

25 Nasrin, R., Biswas, S., Rashid, T. U., Afrin, S., Jahan, R. A., Haque, P., & Rahman, M. M. (2017). Preperation of Chitin-PLA laminated composite for implantable application. Bioactive Materials, 2(4), 199-207. http://dx.doi.org/10.1016/j.bioactmat.2017.09.003. PMid:29744430.

26 Tewari, M., Singh, V. K., Gope, P. C., & Chaudhary, A. K. (2012). Evaluation of mechanical properties of bagasse-glass fiber reinforced composite. Journal of Materials and Envionmental Science, 3(1), 171-184.

27 Devaprakasam, D., Hatton, P. V., Mobus, G., & Inkson, B. J. (2008). Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance. Journal of Physics: Conference Series, 126, 1-5. http://dx.doi.org/10.1088/1742-6596/126/1/012057.

28 Nagalingam, R., Sundaram, S., & Retnam, B. S. J. (2010). Effect of nanoparticles on tensile, impact and fatigue properties of fibre reinforced plastics. Bulletin of Materials Science, 33(5), 525-528. http://dx.doi.org/10.1007/s12034-010-0080-2.

29 Lan, H., & Venkatesh, T. A. (2014). On the relationships between hardness and the elastic and plastic properties of isentropic power-law hardening materials. Philosophical Magazine, 94(1), 35-55. http://dx.doi.org/10.1080/14786435.2013.839889.

30 Gacitua, W., Bahr, D., & Wolcott, M. (2010). Damage of the cell wall during extrusion and injection molding of wood plastic composites. Composites. Part A, Applied Science and Manufacturing, 41(10), 1454-1460. http://dx.doi.org/10.1016/j.compositesa.2010.06.007.

31 Nampoothiri, K. M., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. http://dx.doi.org/10.1016/j.biortech.2010.05.092. PMid:20630747.

32 Raj, S. S., Kannan, T. K., Babu, M., & Vairavel, M. (2019). Processing and testing parameters of PLA reinforced with natural plant fiber composite materials – A brief review. International Journal of Mechanical and Production Engineering Research and Development, 9(2), 933-940.

33 Sifat, R., Akter, M., & Bazlur Rashid, A. K. M. (2016). Properties of micro-nano particle size admixtures of alumina at different sintering condition. AIP Conference Proceedings, 1754(1), 030005. http://dx.doi.org/10.1063/1.4958349.

34 Chaparro, T. D. C. (2016). Synthesis of nanocomposites with anisotropic properties bby controlled radical emulsion polymerization lorena (Doctoral thesis). University of Lyon, France.

35 Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sanchez Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites. Part B, Engineering, 86, 168-177. http://dx.doi.org/10.1016/j.compositesb.2015.09.063.

36 Goud, E. Y., Nagaphani Sastry, M., Devi, K. D., & Raghavendra Roa, H. (2016). Mechanical properties of natural composite fiber Prosopis Juliflora. International Journal of Innovative Research in Science, Engineering and Technology, 5(9), 17037-17043.

37 Binoj, J. S., Edwin Raj, R., & Daniel, B. S. S. (2017). Comprehensive characterization of industrially discarded fruit fiber, Tamarindus Indica L. as a potential eco-friendly bio-reinforcement for polymer composite. Journal of Cleaner Production, 142(3), 1321-1331. http://dx.doi.org/10.1016/j.jclepro.2016.09.179.

5f524d5c0e882550027dc2e2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections