Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Surface treated bagasse fiber ash on rheological, mechanical properties of PLA/BFA biocomposites

Sitticharoen, Watcharin; Uthiyoung, Chet; Passadee, Nateechai; Wongprom, Chanokpol

Downloads: 0
Views: 530


Abstract: The use of silica based bagasse fiber ash (BFA) as a reinforcing filler in polylactic acid (PLA) biocomposites was examined. The effects of surface-treated BFA on the rheological, swelling behavior, and mechanical properties and water absorption of biocomposites were studied. BFA was treated using a silane coupling agent (Bis-[3-(triethoxysilyl)-propy]-tetrasulfide). Composites with BFA were varied from 5 to 25wt.%. The PLA/BFA composite melts were pseudoplastic non -Newtonion fluid and exhibited a shear thinning behavior. The viscosity of the surface-treated BFA biocomposites was higher than that of the untreated. The viscosity of the composites decreased with increasing BFA content and shear rate. The extrudate swell of the composites increased with increasing shear rate, whereas it decreased with increasing BFA content and die temperature. The extrudate swell tended to be suppressed when surface-treated BFA was used. Silane treated BFA composites showed improvement in their mechanical properties, and exhibited significantly reduced water absorption.


bagasse fiber ash, polylectic acid, rheology, extrudate swell, mechanical properties


Arao, Y., Fujiura, T., Itani, S., & Tanaka, T. (2015). Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites. Part B, Engineering , 68, 200-206. http://dx.doi.org/10.1016/j.compositesb.2014.08.032.

Yuqiong, X., Min, Y., & Jinping, Q. (2009). Melt rheology of poly (lactic acid) plasticized by epoxidized soybean oil. Wuhan University Journal of Natural Sciences , 14(4), 349-354. http://dx.doi.org/10.1007/s11859-009-0413-4.

Sawpan, M. A., Pickering, K. L., & Fernyhough, A. (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Composites. Part A, Applied Science and Manufacturing, 42(3), 310-319. http://dx.doi.org/10.1016/j.compositesa.2010.12.004.

Peltola, H., Pääkkönen, E., Jetsu, P., & Heinemann, S. (2014). Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Composites. Part A, Applied Science and Manufacturing , 61, 13-22. http://dx.doi.org/10.1016/j.compositesa.2014.02.002.

Cordeiro, G. C., Toledo, R. D., Fo., Fairbairn, E. M. R., Luis, M. M. T., & Oliveira, C. H. (2004). Influence of mechanical grind on the pozzolanic activity of residual sugarcane bagasse ash. In International RILEM Conference on Use of Recycled Materials in Building and Structure (p. 731-740). Bagneux, France: RILEM Publications Sarl.

Office of Cane and Sugar Board. (2015). Report on total cane crushing and sugar production 2014/2015. Bangkok, Thailand: Office of Cane and Sugar Board.

Agunsoye, J. O., & Aigbodion, V. S. (2013). Bagasse filled recycled polyethylene bio-composites: Morphologicaland mechanical properties study. Results in Physics, 3, 187-194. http://dx.doi.org/10.1016/j.rinp.2013.09.003.

Aigbodion, V. S., Hassan, S. B., & Agunsoye, J. O. (2012). Effect of bagasse ash reinforcement on dry sliding wear behavior of polymer. Materials & Design, 33(1), 322-327. http://dx.doi.org/10.1016/j.matdes.2011.07.002.

Sitticharoen, W., Chainawakul, A., Sangkas, T., & Kuntham, Y. (2016). Rheological and mechanical properties of silica-based bagasse-fiber-ash-reinforced recycled HDPE composites. Mechanics of Composite Materials, 52(3), 421-432. http://dx.doi.org/10.1007/s11029-016-9594-z.

Kanking, S., Niltui, P., Wimolmala, E., & Sombatsompop, N. (2012). Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber. Materials & Design, 41, 74-82. http://dx.doi.org/10.1016/j.matdes.2012.04.042.

Awal, A., Rana, M., & Sain, M. (2015). Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mechanics of Materials, 80, 87-95. http://dx.doi.org/10.1016/j.mechmat.2014.09.009.

Dangtungee, R., Petcharoen, K., Pinijsattawong, K., & Siengchin, S. (2012). Investigation of the rheological properties and die swell of polylactic acid/nanoclay composites in a capillary rheometer. Mechanics of Composite Materials, 47(6), 663-670. http://dx.doi.org/10.1007/s11029-011-9246-2.

Muksing, N., Nithitanakul, M., Grady, B. P., & Magaraphan, R. (2008). Melt rheology and extrusion swell of organobentonite-filled polypropylene nanocomposites. Polymer Testing, 27(4), 470-479. http://dx.doi.org/10.1016/j.polymertesting.2008.01.008.

Liang, J. Z. (2008). Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts. Polymer Testing, 27(8), 936-940. http://dx.doi.org/10.1016/j.polymertesting.2008.08.001.

Intawong, N., Udomsom, S., Sugtakchan, K., & Sitticharoen, W. (2015). Influence of flow pattern development at die entrance and inside annular die on extrudate swell behavior of NR compound. Polímeros: Ciência e Tecnologia, 25(5), 508-513. http://dx.doi.org/10.1590/0104-1428.2021.

Dangtungee, R., Yun, J., & Supaphol, P. (2005). Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene. Polymer Testing , 24(1), 2-11. http://dx.doi.org/10.1016/j.polymertesting.2004.08.006.

Liang, J. Z. (2002). The melt elastic behavior of polypropylene/glass bead composites in capillary flow. Polymer Testing, 21(8), 927-931. http://dx.doi.org/10.1016/S0142-9418(02)00036-3.

Liang, J. Z., Yang, J., & Tang, C. Y. (2010). Die-swell behavior of PP/Al(OH)3 /Mg(OH)2 flame retardant composite melts. Polymer Testing , 29(5), 624-628. http://dx.doi.org/10.1016/j.polymertesting.2010.03.014.

Dharmalingam, U., Dhanasekaran, M., Balasubramanian, K., & Kandasamy, R. (2015). Surface treated fly ash filled modified epoxy composites. Polímeros: Ciência e Tecnologia, 25(6), 540-546. http://dx.doi.org/10.1590/0104-1428.2152.

Saenghirunwattana, P., Noomhorm, A., & Rungsardthong, V. (2014). Mechanical properties of soy protein based “green” composites reinforced with surface modified cornhusk fiber. Industrial Crops and Products, 60, 144-150. http://dx.doi.org/10.1016/j.indcrop.2014.06.010.

5b7c67dd0e8825da39896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections