Morphological, thermal and bioactivity evaluation of electrospun PCL/β-TCP fibers for tissue regeneration
Siqueira, Lilian de; Passador, Fábio Roberto; Lobo, Anderson Oliveira; Trichês, Eliandra de Sousa
Abstract
Electrospinning is a simple and low-cost way to fabricate fibers. Among the various polymers used in electrospinning, polycaprolactone (PCL) stands out due to its excellent biodegradability and biocompatibility. However, PCL has some limitations such as low bioactivity, hydrophobic surface, and long in vivo degradation. Calcium phosphate ceramics have been recognized as an attractive biomaterial. They are bioactive and osteoinductive, and some are even quite biodegradable. Different contents of particles of beta-tricalcium phosphate (β-TCP) were incorporated in polymer matrix to form fibers of PCL/β-TCP composites by electrospinning for possible application in tissue regeneration. The presence of β-TCP particles promoted some changes in the thermal properties of the fibers. The immersion of PCL/β-TCP 8 wt-% fibers in simulated body fluid (SBF) caused the formation of a denser and homogeneous apatite layer on its surface.
Keywords
References
1 Zhou, H., Lawrence, J. G., & Bhaduri, S. B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomaterialia , 8(6), 1999-2016. http://dx.doi.org/10.1016/j.actbio.2012.01.031. PMid:22342596.
2 Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three- dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862-890. http://dx.doi.org/10.1016/j.progpolymsci.2013.06.002.
3 Hassan, M. I., Sun, T., & Sultana, N. J. (2014). Fabrication of Nanohydroxyapatite/Poly(caprolactone) composite microfibers using electrospinning technique for tissue engineering applications. Journal of Nanomaterials, 2014(65), 1-7. http://dx.doi.org/10.1155/2014/209049.
4 Garkhal, K., Verma, S., Jonnalagadda, S., & Kumar, N. (2007). Fast degradable poly (L -lactide- co - e -caprolactone) microspheres for tissue engineering : synthesis, characterization, and degradation behavior. Journal of Polymer Science. Part A, Polymer Chemistry, 45(13), 2755-2764. http://dx.doi.org/10.1002/pola.22031.
5 Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science. Materials in Medicine, 16(10), 933-946. http://dx.doi.org/10.1007/s10856-005-4428-x. PMid:16167102.
6 Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7(5), 30-40. http://dx.doi.org/10.1016/S1369-7021(04)00233-0.
7 Holzapfel, B. M., Reichert, J. C., Schantz, J. T., Gbureck, U., Rackwitz, L., Nöth, U., Jakob, F., Rudert, M., Groll, J., & Hutmacher, D. W. (2012). How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug , 65(4), 581-603. http://dx.doi.org/10.1016/j.addr.2012.07.009. PMid:22820527.
8 Kawachi, E. Y., Bertran, C. A., Reis, R. R., & Alves, O. L. (2000). Biocerâmicas: tendências e perspectivas de uma área interdisciplinar. Quimica Nova, 23(4), 518-522. http://dx.doi.org/10.1590/S0100-40422000000400015.
9 Lu, L., Zhang, Q., Wootton, D., Chiou, R., Li, D., Lu, B., Lelkes, P., & Zhou, J. (2012). Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. Journal of Materials Science. Materials in Medicine, 23(9), 2217-2226. http://dx.doi.org/10.1007/s10856-012-4695-2. PMid:22669285.
10 Ribeiro, W. A. R., No., Pereira, I. H. L., Ayres, E., De Paula, A. C. C., Averous, L., Góes, A. M., Oréfice, R. L., & Bretas, R. E. S. (2012). Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability. Polymer Degradation & Stability, 97(10), 2037-2051. http://dx.doi.org/10.1016/j.polymdegradstab.2012.03.048.
11 Hassan, M. I., Sultana, N., & Hamdan, S. (2014). Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. Journal of Nanomaterials , 2014, 1-6. http://dx.doi.org/10.1155/2014/573238.
12 Park, C. H., Kim, E. K., Tijing, L. D., Amarjargal, A., Pant, H. R., Kim, C. S., & Shon, H. K. (2014). Preparation and characterization of LA/PCL composite fibers containing beta tricalcium phosphate (β-TCP) particles. Ceramics International , 40(3), 5049-5054. http://dx.doi.org/10.1016/j.ceramint.2013.10.016.
13 Kim, M. S., & Kim, G. H. (2014). Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration. Materials Letters, 120, 246-250. http://dx.doi.org/10.1016/j.matlet.2014.01.083.
14 Siqueira, L., Passador, F. R., Costa, M. M., Lobo, A. O., & Sousa, E. (2015). Influence of the addition of β-TCP on themorphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Materials Science and Engineering C, 52, 135-143. http://dx.doi.org/10.1016/j.msec.2015.03.055. PMid:25953550.
15 Pereira, R. B., & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto. Polímeros: Ciência e Tecnologia, 24(2), 198-202. http://dx.doi.org/10.4322/polimeros.2014.042.
16 Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of Biomedical Materials Research, 24(6), 721-734. http://dx.doi.org/10.1002/jbm.820240607. PMid:2361964.
17 Sasmazel, H. T. (2011). Novel hybrid scaffolds for the cultivation of osteoblast cells. International Journal of Biological Macromolecules, 49(4), 838-846. http://dx.doi.org/10.1016/j.ijbiomac.2011.07.022. PMid:21839769.
18 Vert, M., Li, S. M., Spenlehauer, G., & Guerin, P. (1992). Bioresorbability and biocompatibility of aliphatic polyesters. Journal of Materials Science. Materials in Medicine , 3(6), 432-446. http://dx.doi.org/10.1007/BF00701240.
19 Pereira, C. S., Gomes, M. E., Reis, R. L., & Cunha, A. (1999). Hard cellular materials in the human body: properties and production of foamed polymers for bone replacement. In J. F. Sadoc , & N. Rivier (Eds.), Foams and emulsion (pp. 354, 193-206). USA: Springer Netherlands. http://dx.doi.org/10.1007/978-94-015-9157-7_12.
20 Baji, A., Wong, S. C., Liu, T., Li, T., & Srivatsan, T. S. (2007). Morphological and x-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. Journal of Biomedical Materials Research. Part B, Applied Biomaterials,81B(2), 343-350. http://dx.doi.org/10.1002/jbm.b.30671. PMid:17022054.