Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/journal/polimeros/article/doi/10.1590/0104-1428.1869
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Development of paints with infrared radiation reflective properties

Coser, Eliane; Moritz, Vicente Froes; Krenzinger, Arno; Ferreira, Carlos Arthur

Downloads: 0
Views: 976

Abstract

Large buildings situated in hot regions of the Globe need to be agreeable to their residents. Air conditioning is extensively used to make these buildings comfortable, with consequent energy consumption. Absorption of solar visible and infrared radiations are responsible for heating objects on the surface of the Earth, including houses and buildings. To avoid excessive energy consumption, it is possible to use coatings formulated with special pigments that are able to reflect the radiation in the near- infrared, NIR, spectrum. To evaluate this phenomenon an experimental study about the reflectivity of paints containing infrared-reflective pigments has been made. By irradiating with an IR source and by measuring the surface temperatures of the samples we evaluated: color according to ASTM D 2244-14, UV/VIS/NIR reflectance according to ASTM E 903-12 and thermal performance. Additionally, the spectral reflectance and the IR emittance were measured and the solar reflectance of the samples were calculated. The results showed that plates coated with paints containing IR-reflecting pigments displayed lower air temperature on the opposite side as compared to conventional coatings, indicating that they can be effective to reflect NIR and decrease the temperature of buildings when used in roofs and walls.

Keywords

cool paints, near-infrared reflectance, solar spectral reflectance, cool pigments, colored reflecting pigments.

References

1. Malshe, V., & Bendiganavale, A. (2008). Infrared reflective inorganic pigments. Recent Patents on Chemical Engineering, 1(1), 67-79. http://dx.doi.org/10.2174/2211334710801010067.

2. Levinson, R., Berdahl, P., & Akbari, H. (2005). Solar spectral optical properties of pigments— art I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Solar Energy Materials and Solar Cells, 89(4), 319-349. http://dx.doi.org/10.1016/j.solmat.2004.11.012.

3. Kaur, B., Quazi, N., Ivanov, I., & Bhattacharya, S. N. (2012). Near-infrared reflective properties of perylene derivatives. Dyes and Pigments, 92(3), 1108-1113. http://dx.doi.org/10.1016/j.dyepig.2011.06.011.

4. Libbra, A., Tarozzi, L., Muscio, A., & Corticelli, M. A. (2011). Spectral response data for development of cool coloured tile coverings. Optics & Laser Technology, 43(2), 394-400. http://dx.doi.org/10.1016/j.optlastec.2009.07.001.

5. Levinson, R., Akbari, H., & Berdahl, P. (2010). Measuring solar reflectance—Part I: Defining a metric that accurately predicts solar heat gain. Solar Energy, 84(9), 1717-1744. http://dx.doi.org/10.1016/j.solener.2010.04.018.

6. Zinzi, M., Carnielo, E., & Agnoli, S. (2012). Characterization and assessment of cool coloured solar protection devices for Mediterranean residential buildings application. Energy and Building, 50, 111-119. http://dx.doi.org/10.1016/j.enbuild.2012.03.031.

7. Song, Z., Zhang, W., Shi, Y., Song, J., Qu, J., Qin, J., Zhang, T., Li, Y., Zhang, H., & Zhang, R. (2013). Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency. Energy and Building, 63, 49-58. http://dx.doi.org/10.1016/j.enbuild.2013.03.051.

8. DuPont (2007). DuPont™ Ti-Pure® titanium dioxide: titanium dioxide for coatings. U.S.A.: DuPont. Retrieved in 15 May 2014, from http://www2.dupont.com/Titanium_Technologies/pt_US/tech_info/literature/Coatings/CO_B_H_65969_Coatings_Brochure.pdf

9. Fang, V., Kennedy, J., Futter, J., Manning, J., (2013). A review of near infrared reflectance properties of metal oxide nanostructures (GNS Science Report). New Zealand: Institute of Geological and Nuclear Sciences.

10. Liu, J., Lu, Y., Liu, J., Yang, X., & Yu, X. B. (2010). Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. Journal of Alloys and Compounds, 496(1-2), 261-264. http://dx.doi.org/10.1016/j.jallcom.2010.01.053.

11. Ryan, M. (2005). Introduction to IR-reflective pigments. Paint & Coatings Industry, 170-176.

12. Shepherd Color Company (2001). Select a product for more information. Cincinnati: Shepherd Color Company. Retrieved in 15 May 2014, from http://www.shepherdcolor.com/Products/ColorChart.aspx

13. Uemoto, K. L., Sato, N. M. N., & John, V. M. (2010). Estimating thermal performance of cool colored paints. Energy and Building, 42(1), 17-22. http://dx.doi.org/10.1016/j.enbuild.2009.07.026.

14. Agilent Technologies (2000). Molecular spectroscopy. Santa Clara: Agilent Technologies. Retrieved in 16 May 2014, from http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Molecular-Spectroscopy/Cary-5000-UV-Vis-NIR/Pages/default.aspx

15. American Society for Testing and Materials (2012). ASTM E903-12: Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. West Conshohocken: ASTM.

16. Khan, M. A. I., Ueno, K., Horimoto, S., Komai, F., Someya, T., Inoue, K., Tanaka, K., & Ono, Y. (2009). CIELAB color variables as indicators of compost stability. Waste Management, 29(12), 2969-2975. http://dx.doi.org/10.1016/j.wasman.2009.06.021. PMid:19781930.

17. Quimanil (2010). Colorimetria. São Paulo: Quimanil. Retrieved in 7 October 2014, from http://www.quimanil.com.br/empresa/informacoes_detalhe.php?id=7

18. García-Marino, M., Escudero-Gilete, M. L., Heredia, F. J., Escribano-Bailón, M. T., & Rivas-Gonzalo, J. C. (2013). Color-copigmentation study by tristimulus colorimetry (CIELAB) in red wines obtained from Tempranillo and Graciano varieties. Food Research International, 51(1), 123-131. http://dx.doi.org/10.1016/j.foodres.2012.11.035.

19. American Society for Testing and Materials (2014). ASTM D2244-14: Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. West Conshohocken: ASTM.

20. Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. http://dx.doi.org/10.1016/j.solener.2010.12.023.

21. Suehrcke, H. E. L., Peterson, E. L., & Selby, N. (2008). Effect of roof solar reflectance on the building heat gain in a hot climate. Energy and Building, 40(12), 2224-2235. http://dx.doi.org/10.1016/j.enbuild.2008.06.015.

22. Henninger, J. H. (1984). Solar absorptance thermal emittance of some common spacecraft thermal-control coatings. Washington: Scientific and Technical Information Branch. Retrieved in 8 October 2014, from http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840015630.pdf

23. Korifi, R., Le Dréau, Y., Antinelli, J. F., Valls, R., & Dupuy, N. (2013). CIEL*a*b* color space predictive models for colorimetry devices--analysis of perfume quality. Talanta, 104, 58-66. http://dx.doi.org/10.1016/j.talanta.2012.11.026. PMid:23597889.
588371c27f8c9d0a0c8b4a52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections