Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/journal/polimeros/article/doi/10.1590/0104-1428.04317
Polímeros: Ciência e Tecnologia
Original Article

Preparation of gelatin beads treated with glucose and glycerol

Way, Débora Vieira; Nele, Márcio; Pinto, José Carlos

Downloads: 0
Views: 1081

Abstract

Abstract: Gelatin is employed in pharmaceutical applications because of its biodegradability, biocompatibility and low toxicity. However, it may be necessary to promote gelatin crosslinking in order to develop drug release systems and extend release times. SEC analyses are used here for the first time to monitor the evolution of molar mass distributions of gelatins during treatment with glycerol and glucose in dispersed media. Unambiguous experimental evidence of gelatin crosslinking in presence of sugars and glycerol has yet to be presented. SEC results indicate that average molar masses decrease during gelatin treatment, while FT-IR analyses indicate that gelatins are subject to structural modifications during processing, which can explain the decrease of gelatin solubility after treatment. The results presented here indicate the importance of using SEC techniques to monitor gelatin crosslinking, as they seemingly contradict previously published results that make use of indirect measures for this purpose.

Keywords

crosslinking; gelatin; size exclusion chromatography; SEC; molar mass distribution

References

Schrieber, R., & Gareis, H. (2007). Gelatin handbook. Germany: Wiley VCH. http://dx.doi.org/10.1002/9783527610969. 

Digenis, A., Gold, T., & Shah, V. (1994). Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. Journal of Pharmaceutical Sciences , 83(7), 915-921. http://dx.doi.org/10.1002/jps.2600830702. PMid:7965669. 

Gelatin Manufacturers Institute of America – GMIA. (2012). Gelatin handbook . Retrieved from http://www.gelatin-gmia.com/images/GMIA_Gelatin_Manual_2012.pdf.

Yannas, I. (1972). Collagen and gelatin in the solid state. Journal of Macromolecular Science7(1), 49-106. http://dx.doi.org/10.1080/15321797208068160.

Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharmaceutical Research , 13(12), 1838-1845. http://dx.doi.org/10.1023/A:1016085108889. PMid:8987081. 

Esposito, E., Cortesi, R., & Nastruzzi, C. (1996). Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials17(20), 2009-2020. http://dx.doi.org/10.1016/0142-9612(95)00325-8. PMid:8894096. 

Vandelli, M., Romagnoli, M., Monti, A., Gozzi, M., Guerra, P., Rivasi, F., & Forni, F. (2004). Microwave-treated gelatin microspheres as drug delivery system. Journal of Controlled Release96(1), 67-84. http://dx.doi.org/10.1016/j.jconrel.2004.01.009. PMid:15063030. 

Khan, S., & Schneider, M. (2014). Stabilization of gelatin nanoparticles without crosslinking. Macromolecular Bioscience14(11), 1627-1638. http://dx.doi.org/10.1002/mabi.201400214. PMid:25154300. 

Fan, H., & Dash, A. (2001). Effect of cross-linking on the in vitro release kinetics of doxorubicin from gelatin implants. International Journal of Pharmaceutics , 213(1-2), 103-116. http://dx.doi.org/10.1016/S0378-5173(00)00651-7. PMid:11165098. 

Farris, S., Song, J., & Huang, Q. (2010). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry , 58(2), 998-1003. http://dx.doi.org/10.1021/jf9031603. PMid:20043635. 

Ulubayram, K., Eroglu, I., & Hasirci, N. (2010). Gelatin microspheres and sponges for delivery of macromolecules. Journal of Biomaterials Applications16(3), 227-241. http://dx.doi.org/10.1177/0885328202016003178. PMid:11939457. 

Zampieri, A., Lima, E., & Diniz, D. (2005). Estudo da ligação cruzada induzida pelo formaldeído em cápsulas de gelatina dura. Revista Eletrônica de Farmácia2(2), 73-79. 

Davis, P., & Tabor, B. (1963). Kinetic study of the crosslinking of gelatin by formaldehyde and glyoxal. Journal of Polymer Science Part A1(2), 799-815. http://dx.doi.org/10.1002/pol.1963.100010217. 

Carvalho, R., & Grosso, C. (2005). properties of chemically modified gelatin films. Brazilian Journal of Chemical Engineering23(1), 45-53. http://dx.doi.org/10.1590/S0104-66322006000100006. 

Lai, J. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science. Materials in Medicine21(6), 1899-1911. http://dx.doi.org/10.1007/s10856-010-4035-3. PMid:20238149.

Lai, J. (2011). Evaluation of cross-linking time for porous gelatin hydrogels on cell sheet delivery performance. Journal of Mechanics in Medicine and Biology11(5), 967-981. http://dx.doi.org/10.1142/S0219519411004873. 

Zhao, Y., & Sun, Z. (2017). Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. International Journal of Food Properties20(3S), 2822-2832. http://dx.doi.org/10.1080/10942912.2017.1381111. 

Kaczmarek, B., Sionkowska, A., Monteiro, F. J., Carvalho, A., Łukowicz, K., & Osyczka, A. M. (2018). Characterization of gelatin and chitosan scaffolds cross-linked by addition of dialdehyde starch. Biomedical Materials (Bristol, England) , 13(1), 015016. http://dx.doi.org/10.1088/1748-605X/aa8910. PMid:29244656. 

Madhan, B., Subramanian, V., Rao, J. R., Nair, B. U., & Ramasami, T. (2005). Stabilization of collagen using plant polyphenol: Role of catechin. International Journal of Biological Macromolecules37(1-2), 47-53. http://dx.doi.org/10.1016/j.ijbiomac.2005.08.005. PMid:16183110. 

Schacht, E., Bogdanov, E., Bulcke, B., & De Rooze, A. (1997). Hydrogels prepared by crosslinking of gelatin with dextran dialdehyde. Reactive & Functional Polymers , 33(2-3), 109-116. http://dx.doi.org/10.1016/S1381-5148(97)00047-3. 

Cortesi, R., Esposito, E., Osti, M., Menegatti, E., Squarzoni, G., Spencer Davis, S., & Nastruzzi, C. (1999). Dextran cross-linked gelatin microspheres as a drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics47(2), 153-160. http://dx.doi.org/10.1016/S0939-6411(98)00076-9. PMid:10234540. 

Wu, H., Zhang, Z., Wu, D., Zhao, H., Yu, K., & Hou, Z. (2006). Preparation and drug release characteristics of pingyangmycin-loaded dextran cross-linked gelatin microspheres for embolization therapy. Journal of Biomedical Materials Research. Part B, Applied Biomaterials78(1), 56-62. http://dx.doi.org/10.1002/jbm.b.30458. PMid:16333847. 

Cortesi, R., Nastruzzi, C., & Davis, S. (1998). Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials19(18), 1641-1649. http://dx.doi.org/10.1016/S0142-9612(98)00034-9. PMid:9839999. 

Ulubayram, K., Eroglu, I., & Hasirci, N. (2002). Gelatin microspheres and sponges for delivery of Macromolecules. Journal of Biomaterials Applications16(3), 227-241. http://dx.doi.org/10.1177/0885328202016003178. PMid:11939457. 

Wang, C., Ai, D., Chen, C., Lin, H., Li, J., Shen, H., Yi, W., Qi, Y., Wu, H., & Cao, J. (2009). Preparation and evaluation of danofloxacin mesylate microspheres and its pharmacokinetics in pigs. Veterinary Research Communications33(8), 1013-1022. http://dx.doi.org/10.1007/s11259-009-9320-6. PMid:19774478. 

Dupont, A. (2002). Study of the degradation of gelatin in paper upon aging using aqueous size-exclusion chromatography. Journal of Chromatography. A950(1-2), 113-124. http://dx.doi.org/10.1016/S0021-9673(02)00010-9. PMid:11990984. 

Yannas, I., & Tobolsky, A. (1967). Cross-linking of gelatine by dehydration. Nature215(5100), 509-510. http://dx.doi.org/10.1038/215509b0. PMid:6057911. 

Djakovic, L., Sovilj, V., Milosevic, S., & Sad, N. (2010). Rheological behaviour of thixotropic starch and gelatin gels. Starch42(10), 380-385. http://dx.doi.org/10.1002/star.19900421004. 

Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica39(8), 549-559. http://dx.doi.org/10.1111/j.1745-7270.2007.00320.x. PMid:17687489. 

Susi, H., & Byler, D. (1986). Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods in Enzymology130, 290-311. http://dx.doi.org/10.1016/0076-6879(86)30015-6. PMid:3773736. 

Hanemaaijer, R., Visser, H., Koolwijk, P., Sorsa, T., Salo, T., Golub, L. M., & van Hinsbergh, V. W. (1998). Inhibition of MMP Synthesis by Doxycycline and Chemically Modified Tetracyclines (CMTs) in Human Endothelial Cells. Advances in Dental Research12(2), 114-118. http://dx.doi.org/10.1177/08959374980120010301. PMid:9972133. 

Joshi, N., & Miller, D. (1997). Doxycycline revisited. Archives of Internal Medicine157(13), 1421-1428. http://dx.doi.org/10.1001/archinte.1997.00440340035003. PMid:9224219. 

5c55c1380e8825451cb25bb2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections