Estudo Interlaboratorial para Aferição de Espectrômetro Infravermelho

Yoshio Kawano

Resumo: A Comissão Técnica de Caracterização e Identificação de Polímeros, da Associação Brasileira de Polímeros (ABPol), realizou um estudo interlaboratorial para aferição de espectrômetro infravermelho, de acordo com a Norma ASTM E 691-92. A amostra escolhida foi o filme de poliestireno (não rastreado) fornecido pelos fabricantes, na ocasião da aquisição do aparelho. A comparação interlaboratorial das médias das onze bandas analisadas em relação aos valores recomendados pela IUPAC foi satisfatória. Os resultados da maior parte dos laboratórios participantes (18) apresentaram dados compatíveis com a consistência estatística interlaboratorial crítica ($h = \pm 2.5 \text{ cm}^{-1}$).

Palavras-chave: Estudo interlaboratorial, espectrômetro infravermelho, poliestireno

Introdução

A Comissão Técnica de Caracterização e Identificação de Polímeros foi fundada em 13 de maio de 1992 com o propósito de aumentar o intercâmbio de conhecimentos e experiências — relacionados a polímeros — entre pesquisadores, técnicos e profissionais da indústria, universidade e institutos de pesquisa, para resolução de problemas comuns à área.

A Comissão tem realizado reuniões mensais regularmente com a participação de sócios e não-sócios da Associação Brasileira de Polímeros (ABPol).

Dentre as atividades desenvolvidas pela Comissão, destacam-se os estudos interlaboratoriais, já realizados para índice de fluidez (MFI)¹, calorimetria exploratória de varredura (DSC) e resistência de impacto (Izod).

O presente trabalho é um estudo interlaboratorial de aferição de espectrômetro infravermelho (IV). O objetivo do teste é efetuar um estudo estatístico dos resultados dos diferentes usuários, para que todos os participantes possam utilizar essa experiência em conjunto e otimizar suas condições de teste. Não se trata de um programa de certificação, mas de avaliação do desempenho dos espectrômetros infravermelhos.

A espectroscopia de absorção no IV é uma técnica vibracional bastante difundida nos laboratórios de pesquisa e desenvolvimento, utilizada principalmente na identificação e caracterização de compos-

O teste consistiu em registrar o espectro de absorção infravermelho do filme de poliestireno (PS). Nesse teste, os participantes usaram seus próprios filmes de PS, o mesmo fornecido pelos fabricantes de aparelhos, não sendo ainda um padrão rastreado. Portanto, foram usados filmes de PS de várias procedências e de diferentes espessuras.

A análise dos resultados baseou-se fundamentalmente no tratamento estatístico descrito na norma

Yoshio Kawano, Instituto de Química da Universidade de São Paulo, CP 26.077, CEP 05599-970, São Paulo - SP.

ASTM E 691-92². Não se realizou análise quantitativa em virtude da diversidade de espessura dos filmes de PS usados.

Foram selecionadas onze bandas do PS (3027,1; 2850,7; 1871,0; 1801,6; 1601,4; 1583,1; 1181,4; 1154,3; 1069,1; 1028,0 e 698,9 cm⁻¹)³, todas catalogadas pela IUPAC como bandas-padrão de calibração.

Calculou-se a média aritmética dos valores dos números de onda (\overline{x}) , das onze bandas apresentadas pelos dezoito laboratórios; calculou-se o desvio padrão da média $(S_{\overline{x}})$; calculou-se o parâmetro de consistência estatística interlaboratorial (h) através da expressão $h = d/S_{\overline{x}}$, onde d é o desvio, ou seja, a diferença entre o valor da leitura efetuada pelo laboratório e o valor da média interlaboratorial.

Nos espectrômetros IV com transformada de Fourier, normalmente as leituras das posições das bandas podem ser feitas através do programa *Peak Finder* e, portanto, apenas uma única leitura de cada banda foi realizada. Este fato, por outro lado, impediu de se fazer os cálculos da consistência estatística de cada laboratório (k), segundo a norma ASTM E 691-92.

Os valores de h de cada laboratório indicam o desvio de cada laboratório em relação ao valor de referência (considerado como a média global), e foram comparados aos valores da constante crítica h, ao nível de significância de 0,5%, para um interlaboratorial com 18 participantes (esse valor encontra-se tabelado na norma ASTM E 691-92).

Efetuou-se, também, uma comparação entre os valores da média interlaboratorial e os valores recomendados pela IUPAC (δ) , para as onze bandas selecionadas.

A posição dos resultados de cada laboratório, em relação aos valores da média interlaboratorial e aos valores recomendados pela IUPAC, foi realizada para avaliação individual de cada laboratório.

Experimental

Um protocolo — contendo campos informativos sobre as condições experimentais do teste — foi distribuído aos interessados para ser preenchido e devolvido, juntamente com uma cópia do espectro IV. Foram utilizados filmes de PS não-rastreado de diferentes procedências e espessuras.

Para a análise dos resultados, definiu-se para os laboratórios participantes uma codificação de 1 a 18.

Do total de 18 espectrômetros IV, 17 eram do tipo com transformada de Fourier e apenas um do tipo dispersivo com redes de difração.

A maioria dos aparelhos está equipada com detetor DTGS, divisor de feixe de KBr, várias funções de apodização (*strong*, Happ-Genzel, normal, etc.) foram utilizadas e metade delas realizou o teste usando nitrogênio como gás de purga. O teste foi realizado com resolução de 4 cm⁻¹, 16 varreduras e na região de 400-4.000 cm⁻¹.

Resultados e Discussão

A Fig. 1 mostra o espectro IV do filme de PS e as bandas de absorção, numeradas de 1 a 11, que foram consideradas neste estudo.

A Tabela 1 mostra, como exemplo, as medidas do número de onda (na região de 1.601 cm⁻¹) realizadas pelos 18 laboratórios, a média aritmética, os desvios em relação à média (d), o desvio padrão e os valores de h para cada laboratório. As linhas 19 e 20 referem-se aos valores da consistência estatística interlaboratorial crítica, ao nível de significância de 0,5%, para um estudo interlaboratorial com 18 participantes. Cálculos semelhantes a esses foram efetuados para as demais dez bandas.

Na Tabela 1, apenas o laboratório designado número 7 apresentou uma medida deslocada da média (h = 2,86), cujo valor excede o valor da constante crítica h (± 2,53), sendo portanto uma medida inaceitável. Logo, 94,5% dos laboratórios participantes apresentaram medidas com exatidão aceitável para intervalo de confiança de 99,5%, e apenas 4,5% não apresentaram medidas com exatidão aceitável para esse intervalo de confiança.

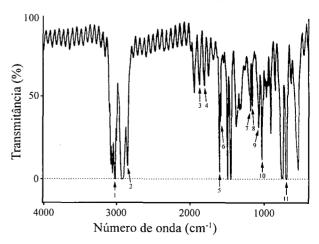


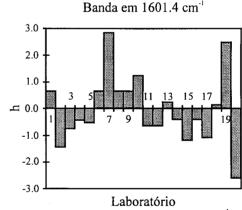
Figura 1. Espectro infravermelho de filme de poliestireno.

A Fig. 2 mostra o gráfico em barras das medidas efetuadas pelos laboratórios em termos do parâmetro h, para a banda em 1.601,4 cm⁻¹. Gráficos em barra similares foram obtidos para as demais dez bandas, cujas porcentagens de exatidão aceitável variaram de banda para banda.

A Tabela 2 mostra os números de onda recomendados pela IUPAC, os valores da média interlabora-

Tabela 1. Medidas do número de onda da banda em 1601,4 cm⁻¹ feita pelos laboratórios, a média, o desvio padrão, o desvio (d) e o parâmetro h.

Laboratório	Banda	d	h
1	1602,0	0,60	0,61
2	1600,0	-1,40	-1,43
3	1600,7	-0,70	-0,71
4	1601,0	-0,40	-0,41
5	1600,9	-0,50	-0,51
6	1602,0	0,60	0,61
7	1604,2	2,80	2,86
8	1602,0	0,60	0,61
9	1602,0	0,60	0,61
10	1602,6	1,20	1,22
11	1600,8	-0,60	-0,61
12	1600,8	-0,60	-0,61
13	1601,6	0,20	0,20
14	1601,1	-0,30	-0,31
15	1600,3	-1,10	-1,12
16	1601,1	-0,30	-0,31
17	1600,6	-0,80	-0,82
18	1601,5	0,10	0,10
19			2,53
20			-2,53
Média	1601,4		
Sx		0,98	


Tabela 2. Número de onda da IUPAC, da média, desvio padrão e desvio da média em relação aos valores da IUPAC.

Banda	IUPAC	Média	s_{x}^{-}	δ
1	3027,1	3025,5	1,36	1,6
2 -	2850,7	2849,7	0,87	1,0
3	1871,0	1870,1	1,08	0,9
4	1801,6	1802,5	1,09	-0,9
5	1601,4	1601,4	0,98	0,0
6	1583,1	1583,4	1,26	-0,3
7	1181,4	1181,8	0,77	-0,4
8	1154,3	1154,5	0,98	-0,2
9	1069,1	1069,6	1,09	-0,5
10	1028,0	1028,8	0,97	-0,8
11	698,9	699,4	1,81	-0,5

torial, o desvio padrão e o desvio da média em relação aos valores da IUPAC (δ). Nessa tabela nota-se que as bandas em 3.025,5 e 699,4 cm⁻¹ apresentaram desvios padrão relativamente grandes — 1,36 e 1,81, respectivamente — em relação aos das demais bandas. Este fato pode ser devido às referidas bandas estarem praticamente saturadas em vários dos espectros IV apresentados.

A Fig. 3 mostra um gráfico em barras do desvio da média interlaboratorial em relação aos valores dos números de onda recomendados pela IUPAC. Observa-se, de modo geral, que a média interlaboratorial apresenta desvios menores do que \pm 1,0 cm⁻¹ em relação aos valores da IUPAC. Um desvio de \pm 1,0 cm⁻¹ é geralmente aceito em trabalhos de espectroscopia vibracional convencional, excetuando os trabalhos de alta resolução.

A Tabela 3 analisa os dados de um determinado laboratório N, onde se mostra os valores dos números de onda da IUPAC, a média interlaboratorial, os valores das medidas efetuadas pelo laboratório N selecionado, a diferença entre a medida do labo-

Figura 2. Gráfico das medidas da banda em 1601,4 cm⁻¹ em termos do parâmetro h para 18 laboratórios.

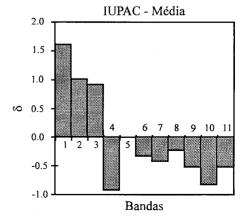
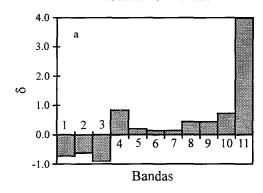
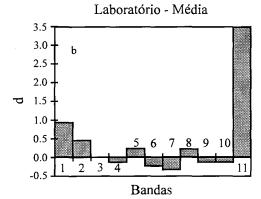




Figura 3. Gráfico comparando os números de onda da média interlaboratorial com os da IUPAC.

Laboratório - IUPAC

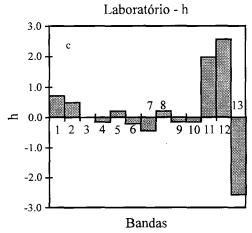


Figura 4. Comparação entre os valores do número de onda do laboratório e os da IUPAC (a), entre os valores do laboratório e as médias (b) e o gráfico da consistência estatística interlaboratorial em função dos números de onda do laboratório (c).

ratório e a da IUPAC (δ_I), a diferença entre a medida do laboratório e a média (d) e a consistência estatística interlaboratorial (h). As linhas 12 e 13 referem-se à constante crítica h para os dezoito participantes.

A Fig. 4 mostra três gráficos (a, b e c) em barras comparando os valores do laboratório em relação aos da IUPAC (a), do laboratório em relação à média (b) e o gráfico da constante h em função dos números de onda do laboratório (c).

Tabela 3. Números de onda da IUPAC, da média interlaboratorial, medidas feitas pelo laboratório da empresa N, diferença entre a medida do laboratório e a da IUPAC (δi), diferença entre a medida do laboratório e a média (d) e o parâmetro h.

N°	IUPAC	Média	Labora- tório	δ1	d	h
1	3027,1	3025,5	3026,4	-0,7	0,9	0,66
2	2850,7	2849,7	2850,1	-0,6	0,4	0,46
3	1871,0	1870,1	1870,1	-0,9	0,0	0,00
4	1801,6	1802,5	1802,4	0,8	-0,1	-0,09
5	1601,4	1601,4	1601,6	0,2	0,2	0,20
6	1583,1	1583,4	1583,2	0,1	-0,2	-0,16
7	1181,4	1181,8	1181,5	0,1	-0,3	-0,39
8	1154,3	1154,5	1154,7	0,4	0,2	0,20
9	1069,1	1069,6	1069,5	0,4	-0,1	-0,09
10	1028,0	1028,8	1028,7	0,7	-0,1	-0,10
11	698,9	699,4	702,9	4,0	3,5	1,93
12						2,53
13						-2,53

Na Fig. 4a, o laboratório N apresenta para a banda 11 (702,9 cm⁻¹) um desvio de 4,0 cm⁻¹ em relação ao valor da IUPAC. A Fig. 4b mostra que a referida banda apresenta um desvio de 3,5 cm⁻¹ em relação ao valor da média interlaboratorial. A Fig. 4c mostra que a banda 11 apresenta o valor h = 1,93, portanto, em termos interlaboratoriais a medida é de exatidão aceitável, apesar dos desvios apresentados. Como essa banda encontra-se saturada no espectro IV, este fato provavelmente deve ter interferido na exatidão da medida efetuada.

As demais bandas apresentaram desvios menores que $\pm 1,0\,\,\mathrm{cm}^{-1}$, portanto as respectivas medidas são de exatidão aceitável.

Alguns laboratórios realizaram medidas através do cursor e outros com o uso do programa *Peak Finder*. A análise dos dados mostrou que as medidas efetuadas com o programa *Peak Finder* apresentaram resultados mais exatos. Naturalmente, no caso do uso do cursor, a medida correta depende muito do conhecimento e da prática do operador.

O uso de diferentes funções de apodização não deve ter influenciado nas medidas, visto que as bandas são de intensidade relativa de média a forte e se apresentam bem isoladas.

Conclusão

De um total de 18 participantes, 13 deles (72,2%) apresentaram todas as medidas com exatidão

aceitável, ou seja, com valores de h abaixo do valor crítico (h = $\pm 2,53$), para o nível de significância de 0,5%. Três participantes apresentaram uma única medida com exatidão inaceitável (h > 2,53 ou h < - 2,53) e dois laboratórios apresentaram duas medidas com exatidão inaceitável.

As bandas, cujas medidas realizadas pelos 18 participantes apresentaram exatidão aceitável foram as seguintes: 1154,3; 1583,1; 1871,0 e 2850,7 cm⁻¹.

Considerando-se a natureza da amostra, o filme de PS usado especialmente para calibração de espectrômetro IV; a escolha de bandas adequadas, com largura de banda estreita e isolada das demais bandas; a predominância de espectrômetro IV com transformada de Fourier, que é alinhada com radiação laser (He-Ne); conclui-se que os resultados obtidos são perfeitamente satisfatórios.

Agradecimentos

Agradecemos à sra. Selma Barbosa Jaconis, do IPT/SP, pela leitura crítica, discussões e sugestões na elaboração do presente trabalho.

Referências Bibliográficas

- 1. Franco Filho, W.Z.; Jaconis, S.B. Polímeros: Ciência e Tecnologia, Nº 4, 32-36, (1993).
- 2. American Society for Testing and Materials Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method, ASTM E 691-92, Philadelphia, 1-20, (1992).
- International Union of Pure and Applied Chemistry Tables of Wavenumbers for the Calibration of Infra-red Spectrometers, Butterworths, London (1961).