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Rbstract

A variety of fiber-reinforced polymer (FRP) has been described in literature, with a considerable subset of studies 
focused on fiber surface treatment (sizing), performance enhancement of matrix and fibers both synthetic and natural, 
and development of more ecologically sustainable composites. The present review discusses the different types of 
fibers and matrices and their applications, depending on the chemical and mechanical properties of their composites. 
In order to evaluate the performance of FRP composites and explore the characteristics of the involved materials, some 
analytical techniques are considered paramount, such as thermal analysis, microscopy, Fourier transform-infrared 
spectroscopy (FT-IR), and others. On this basis, this review addresses the state-of-the-art of material characterization 
methodologies, provides a comprehensive overview of different types of FRP found in literature, as well as links the 
analytical techniques with the main applications contributing to future studies and research in this area.
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1. Introduction

Fiber-reinforced polymer (FRP) composites are broadly 
used in technological applications, for example, aerospace, 
military, automotive, civil, electronic, transport, renewable 
energy, and biomedical engineering[1-10]. This remarkable 
material consists of synthetic or natural fibers with specific 
properties embedded in a polymeric matrix, and the fibers 
can also have geometry and/or orientation to enhance the 
performance target of the composite. In aerospace research, 
Soutis[11] reports that FRP composites have been employed 
in aircraft structures since 1903 in the Wright Brother’s 
Flyer 1, and their use was expanded to military aircraft, 
satellites, and space launchers.

Nowadays, FRP composites are a fast-developing field 
of research and development, given the advances in materials 
and applications. In this context, many derived classes of 
FRP have been reported, such as carbon fiber-reinforced 
plastics (CFRP), natural fiber-reinforced polymer composites 
(NFRPCs), synthetic fiber-reinforced polymer composites 
(SFRPCs), glass fiber-reinforced polymer (GFRP), 
continuous carbon fiber-reinforced polymer composites 
(CCFRPs), discontinuous carbon fiber-reinforced polymer 
composites (DCFRPs), and fiber-reinforced soft composites 
(FRSCs)[1,11,12].

Previous studies by Raju and Shanmugaraja[13], 
Kerni et al.[14], and Chaudhary and Ahmad[15] highlight FRP 
composites as an engineering material with sustainability 
potential; it employs renewable sources, such as natural 
fibers, sustainable and biodegradable polymers. In a recent 
review, Mahesh et al.[16] reports the use of natural fibers in 

combination with different polymeric matrices, focused on 
mechanical properties. The recent developments in materials 
science have been focused on alternatives with less impact 
on the environment and bringing more sustainability to this 
area of composites[17-21].

Soutis[11] predicted that 50% or more of the structural 
mass of an aircraft could be made of CFRP composites. 
According to Hui et al.[1], the CFRP based on epoxy matrix 
composites makes up to 50% of the wings and fuselages 
of the Boeing 787 Dreamliner and the Airbus A350 XWB 
models, due to the mechanical properties of composites 
with failure by diffuse damage, presenting a different and 
more adequate fracture resistance than solid materials, such 
as stainless steel.

This statement highlights how FRP composites are 
crucial in this area, as well as in other fields. Hui et al.[1] 
also report a new class of FRP composites known as FRSCs, 
where the matrix is very soft and resistant. In addition, 
developments in this class could result in a polymeric 
matrix with self-healing properties with potential to replace 
epoxy matrices, which have fundamental roles in aerospace 
engineering. The matrices that could perform this role are 
polyampholyte hydrogel, acrylic tapes forming a double 
network (DN), and self-healing hydrogels[1,11,22].

Alemour et al.[23] also report the use of glass fiber, carbon fiber 
(CF), FRP and a combination of these materials on aeronautical 
application that significantly reduce the weight of an aircraft 
with added resistance when compared to metal alloys, reducing 
fuel consumption, improving efficiency and operating costs. 
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 Moreover, the aerospace sector is considered one of the 
most important fields to invest in composites once it is the 
main responsible for stratospheric pollution, and advances 
in different fibers or polymers that reduce weight and add 
resistance to the composite could reflect in energy efficiency, 
high performance and eco-friendly engineering structures 
and less climatic footprint[24].

Szabó et al.[25] studied alternatives to synthetic FRP 
and developed short CF-reinforced polymers derived from 
cellulosic materials and polyamide 6, monomers that could 
be obtained from renewable sources, and consider this 
composite a potential green alternative to FRP composites.

Imre and Pukánszky[26] mention four factors that determine 
the properties of composites including FRP: component 
properties, composition, structure, and interaction. Thus, 
additive manufacturing technologies are being developed 
to improve the interaction of the mechanical properties of 
polymeric composites with continuous fibers, with the use 
of a suitable binder to associate the FRPCs (fiber-reinforced 
polymer composites) in the interlayer; with the techniques 
being mainly focused on fiber alignment, significant reduction 
of porosity, fiber-matrix adhesion and improvement in the 
bonding of composite layers[27].

Combining a tough hydrogel and a woven fiber fabric, it 
is possible to provide a synergistic effect that increases the 
toughness and tensile properties of composites compared to 
isolated or neat materials. Huang et al.[28] studied the dissipation 
of energy performed by hydrogel matrix in the final toughness 
of composites, interfacial bonding, and synergic effects in 
the mechanical properties of PA-GF (polyampholyte – glass 
fiber fabric), PAAm-GF (polyacrylamide – glass fiber fabric), 
hydrogel composites, and PDMS-GF (polydimethylsiloxane 
– glass fiber fabric) elastomer composite. This study is 
an example of soft composites with remarkable fracture 
resistance and provides a good guide to understanding the 
synergy between hydrogel and fibers. Hydrogels consist of 
a soft material that could be used in composites that require 
softness whilst mechanical properties are also required.

Other promising FRSCs applications are 4D printing, 
biomimetic composites, and embedded sensing/actuation. 
Spackman et al.[29] studied 3D printing of FRSCs and 
reported limitations in this type of printing due to a lack of 
control over the positioning of fibrous structures. One way 
to mitigate this limitation is to develop laminated FRFCs, 
which deliver regular composite structure and improvements 
on properties of fiber alignment when printing, through a 
combination of an ultraviolet curable polymer, providing 
better mechanical properties to the soft material.

Illeperuma et al.[30] report another type of matrix used 
in fiber-reinforced composites: hybrid hydrogels. It is 
challenging to develop a matrix based on hydrogel and use 
strong fiber to reinforce this material, but new techniques 
to improve the toughness of hydrogel are being sought to 
combine this property and stretchability through networks 
with covalent and ionic cross-links.

Recently, Ren et al.[31] point out the importance of 
fiber-reinforced polymer nowadays in new high-technology 
fields and the opportunity to metal replacement in important 
areas like the aeronautics-aerospace industry, new energy, 
and military field.

Basalt fibers (BF) consist of fibers derived from salt rock 
(volcanic stone) with minerals like plagioclase, pyroxene, 
and olivine. The features of this fiber are very interesting 
for FRP application on aerospace, automobile, and navy, 
as this material is considered more mechanically resistant 
than GF (glass fiber), eco-friendly, non-toxic to humans, 
chemically resistant, corrosion-resistant, non-combustible, 
and stable at high temperatures (above 900 °C). The 
disadvantage of BF and GF is their high electrical resistance 
that can interfere in electrostatic discharge, electromagnetic 
interference shielding, and electric heating. However, CF 
are being used in composites to complement functions in 
which GF and BF perform poorly: electrical, thermal, and 
mechanical properties[10,32,33]. Lopes and D’Almeida[34] studied 
CF- reinforced ABS (acrylonitrile butadiene styrene) and 
concluded that the inclusion of CF in the mixture improved 
thermal stability and mechanical properties in the composite.

Regarding NFRPC (natural fiber-reinforced polymer 
composite) produced from plant matter, Bledzki et al.[35] 
reported wood fiber as the lignocellulosic natural fiber most 
used to reinforce plastic materials. Nevertheless, with the 
advances in natural fiber treatment, other sources are being 
studied as reinforcement, such as barley husk, coconut 
shell, banana, jute, cotton, agave, flax, and others[2,12,13,35,36].

According to Yang et al.[37], aramid fibers present low 
density, high rigidity, high strength, and high specific 
modulus. Their main drawback consists in poor interfacial 
adhesion with common industrial resins; although it could 
be improved through chemical treatment of the fiber surface 
with acid solutions, fluorinated compounds, Polyvinyl alcohol 
(PVA), and dopamine auto-oxidative polymerization with 
grafting to promote effective chemical bonds and increase 
adhesion. Plasma and gamma irradiation could also be used.

Thomason[38] recognized the technical importance of 
characterizing the nature of GF used in FRP production in 
order to improve quality control, develop new materials and 
study the prediction of processability influence and composite 
performance. The study highlights the growing relevance of 
the analytical methods for polymeric GF sizing in industry 
and research and synthesizes the main contributions to the 
field. The set of analyses addressed by Thomason included: 
X-ray photoelectron spectroscopy (XPS), secondary ion 
mass spectroscopy (SIMS), electrokinetic analysis (EKA), 
thermogravimetric analysis (TGA), scanning electron 
microscopy (SEM), contact angle (CA), dynamic mechanical 
analysis (DMA), differential scanning calorimetry (DSC), 
DMA, nuclear magnetic resonance (NMR), FT-IR, ultraviolet 
spectroscopy (UVS), gel permeation chromatography (GPC), 
high-performance liquid chromatography (HPLC).

As described above, there are several types of FRP to 
be explored according to fiber surface treatment, advances 
in the polymeric matrix, and so on. Thus, the main purpose 
of this review is to address the development, advances, 
and state-of-the-art on characterization methodologies of 
FRP composites according to the trends in this class of 
composites in constant evolution to attend needs in key 
areas of scientific progress. Furthermore, this review also 
discusses some applications and the diverse materials used 
to develop FRP and presents complementary information 
to recent reviews published on FRP composites[5,13-15,32,39,40].
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In addition, different studies on FRP stability are 
found in the literature and consider many conditions 
that could affect the material within a reasonable period, 
and analytical techniques to evaluate the tests. These 
conditions include the influence of humidity, alkaline 
and acid solutions, temperature variation, ultraviolet 
radiation, freeze-thaw and wet-dry cycles, and combined 
conditions. Considering this, the importance of analytical 
methodologies in supporting FRP research is clear, and 
this review will address some techniques widely applied 
to understand and evaluate different treatments in aging 
experiments[40].

We also evaluate the most important analytical techniques 
to develop FRP composites, and the main results on their 
characterization based on the literature.

2. SEM and SEM/EDS (Scanning electron microscopy/
energy-dispersive X-ray spectroscopy)

Composites with chemical-treated fibers are widely 
analyzed by SEM in order to visually analyze the interaction 
of fiber and matrix, indicating the adhesion process, 
fractures, and presence of gaps between fibers and matrix. 
El-Shekeil et al.[41] studied the effects of treatment of kenaf 
(Hibiscus cannabinus) fiber-reinforced thermoplastic 
polyurethane composite and the SEM images suggested that 
NaOH (sodium hydroxide) + pMDI (polymeric methylene 
diphenyl diisocyanate) chemical treatment in kenaf fibers 
presented better results on wetting and adhesion in the 
studied composite.

On composites produced with CF and ABS, Lopes and 
D’Almeida[34] performed SEM to observe the expected voids 
previously reported in the literature, and voids between the 
CF surface and ABS matrix due to the cooling after the 
extrusion process. SEM analysis also helped to elucidate the 
adhesion around the fibers and the mechanism of fractures 
in neat ABS and reinforced composites.

Furthermore, SEM also contributes to confirming the 
uniformity of reinforced fibers in the hydrogel matrix. Martin 
and Youssef[42] used 2wt% (weight %) and 3wt% by weight 
(relative to swelled hydrogel weight) of E-glass fiber to 
reinforce alginate/PAAm (polyacrylamide) hydrogel and 
SEM images showed how the fibers were distributed in the 
top surface of samples ensuring a degree of uniformity on 
chopped fiber dispersion. This type of hydrogel reinforced 
with E-glass fiber could present medical applications.

SEM was also applied to obtain microscopy evidence of 
some deformation and failure mechanisms such as plastic 
deformation, crazing, crack arrest, crack deflection, and 
fiber holes[29]. Images supported Wang et al.’s[43] findings 
on the durability of epoxy-based GF, basalt fibers, and 
CF-reinforced polymer composite bars during accelerated 
stability tests, casting light on fracture morphology.

SEM was also applied to understand the effects of 
seawater aging on different temperatures, saline concentration, 
and time on CFRP with epoxy resin, in terms of corrosion 
damage to the matrix, CF morphology, presence of NaCl 
(sodium chloride), surface morphology, microcracking, and 
delamination. These phenomena were evident by images 
of aging samples[44].

This microscopy can be associated with energy-dispersive 
X-ray spectroscopy (EDS) to perform elementary analysis[45]. 
This coupled analysis is widely used to characterize minerals, 
metallic materials, composites, microplastics, and micro 
and nanomaterials based on polymers.

3. DSC

DSC is a fundamental thermal analysis applied to evaluate 
phase transitions (e.g., glass transition, melting, crystallization) 
and chemical reactions (e.g., curing, oxidation), as a function 
of temperature, by equipment that consists of a furnace and 
electronic system able to register the difference in temperature 
between reference and sample pans according to the heat 
flow measured in each pan[46,47]. When phase transitions 
or curing processes are important to be evaluated in FRP 
composites, DSC analysis is always required.

As some epoxy resins are commercialized in a pre-preg 
material, where this thermoset matrix is partially cured in the 
fibers of the composite to facilitate the handling of material, 
it is needed to evaluate the conditions of the curing process 
by DSC to characterize the material[47].

Bio-composites are being studied to replace synthetic 
composites, mainly to promote more sustainable products. 
Yu et al.[48] reported extensive use of bio-based thermosets 
in FRP during the last several years. Ferdosian et al.[49] 
studied the performance of bio-based epoxy composites.

In the bio-polymer field, chicken feathers are being 
used as reinforcement fibers in the matrix, as these natural 
sources have interesting chemical (presence of ~90% of 
keratin protein), physical (low electrical conductivity), and 
morphological properties; besides the environmental benefits 
that, associated with synthetic resins, result in applications 
ranging from electrical insulators to biodegradable plastics. 
Chicken feathers were studied via DSC to understand the 
thermal transition temperatures after chemical treatments 
with sodium dodecyl sulfate and hydrogen peroxide. 
The authors suggest that chicken feathers have the potential 
to be used as reinforced fibers in composites due to their 
properties, and also their light weight[50].

Wang and ElGawady[51] studied the influence of moisture 
in concrete-filled epoxy-based GF-reinforced polymer tubes, 
specifically in epoxy-based GF. It was observed that the 
glass transition temperature (Tg) decreased after contact 
with humidity due to the plasticizing effect of water when 
epoxy resin absorbs it.

Mgbemena et al.[24] applied DSC to comprehend the shift 
of Tg via the design of stability studies of FRP composite, 
and to verify the cure of the polymeric resin. Therefore, 
this thermoanalytical technique is essential to characterize 
the phases of composites, aging, and plasticizing process 
of the polymeric matrix.

4. TGA

TGA analysis constitutes a well-known thermoanalytical 
technique that addresses the thermal stability of samples 
by monitoring the weight of the sample over time and 
temperature increase, with a controlled flow of gas during 
the test to ensure the use of inert or oxidizing gas[46,52]. 
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This technique is being used to measure the fiber content in 
FRP and has the benefit of being faster and requiring less 
material than digestion methods[53].

Moon et al.[54] applied TGA to determine GF and CF 
contents of epoxy composites. The different conditions 
were tested to optimize the fiber content measurement. 
The advantages of this method relate to being an easy test 
to carry out, as it is not demanded constant reweighing and 
requires a small sample to test.

Another contribution of TGA analysis is related to studies 
of thermal stability of FRP composites. For instance, CF and 
aramid fibers were studied in a matrix of polybenzoxazine to 
indicate their function to provide more thermal stability to 
FRP composites. CF performed better than Kevlar because 
of higher carbon content, and the presence of graphite in 
CF structures[55].

Mak and Fan[56] also investigated the influence of wet-dry 
cycles in NFRP based on flax and epoxy resin by TGA. 
The resulting peak derivative temperature, representative 
of cellulose degradation in the samples, was considered 
evidence of the reduction of thermal stability of flax.

Lopes and D’Almeida[34] studied the thermal stability 
of CF-reinforced ABS by TGA methodology. Three heating 
rates (10, 20, and 30 ºC/min) in an inert atmosphere 
(N2-Nitrogen gas) and different decomposition levels 
(2.5 to 20% degradation level) in the samples were applied 
to investigate the decomposition kinetics using Flynn-Wall 
calculation that determines the activation energy in each 
decomposition level per sample. From this calculation, 
it was inferred that the thermal stability of samples increased 
or decreased according to the changes in the composition 
of samples.

5. FT-IR

FT-IR spectroscopy is a well-known analytical 
technique used in many fields of science and technology 
to identify and characterize substances or materials that 
absorb specific infrared radiation bands related to different 
molecular vibration levels. Through infrared spectroscopy, 
it is possible to evaluate surface and interfacial phenomena, 
and complex mixtures, by interpretation of spectra in three 
different regions of the infrared spectral range[57]:

• NIR (near-infrared): 14000 – 4000 cm-1;

• MIR (medium infrared): 4000 – 400 cm-1, where it 
is found the fingerprint region (the region with main 
fundamental bands of MIR: 1500 – 400 cm-1);

• FIR (far infrared): 500 – 50 cm-1.

FT-IR is also used to characterize the materials used 
to produce FRP and to evaluate the potential degradation 
of the polymeric matrix during manufacturing. As studied 
by Lopes and D’Almeida[34], the CF-reinforced ABS with 
a variation of fiber concentration and length produced via 
extrusion, was investigated to understand the degradation 
process of ABS (180 - 220 °C) and the interaction of this 
polymer with CF through ATR (attenuated total reflection) 
mode in the medium infrared region (4000 – 450 cm-1). 

The results indicated degradation over 200 °C, it was 
observed absorbance in the region related to the stretching 
of the carbonyl group (C=O) at 1690 and 1800 cm-1. As ABS 
does not present oxygen in its molecular structure, this result 
shows that oxidation is occurring during the extrusion. 
No influence of the interaction of CF in the matrix in polymer 
degradation was observed.

Chua et al.[58] applied FT-IR using ATR to observe 
the surface chemical composition changes along the 
aging process (37°C for 1, 3, 6, and 12 months) of CFRP 
for implementable medical devices. CFRP discs with 
continuous and discontinuous CF, and different matrices 
based on epoxy resins or vinyl ester. 3D printing fabrication 
was also tested employing fused filament fabrication 
technology with a PA (polyamide) thermoplastic matrix. 
They observed some functional groups like C=O (at 1730 
cm-1) and C-O (1240 cm-1) indicating an oxidative process 
from months 0 to 12. Another band also evaluated by this 
study was about 3400 cm-1, related to O-H stretching and the 
absorption of water during the aging process. The authors 
correlated the FT-IR results with an EDS performed in 
tandem with SEM. Although EDS accused in all samples 
a significant increase of oxygen level from 1 to 3 months, 
the FT-IR evaluation did not show the same tendency[58]. 
This difference observed between methodologies could 
be derived from the contact of the sample with the crystal 
in FT-IR analysis. The ATR is very dependent on good 
contact between the sample and crystal, as mentioned by 
Sanches et al.[59].

Wang and ElGawady[51] studied concrete filled 
epoxy-based GF-reinforced polymer tubes to understand 
the moisture effect in the GFRP, as epoxy can absorb up 
to 7% moisture by weight, according to the authors, and 
it will reflect directly in the mechanical properties of the 
final material. GFRP was analyzed by transmission mode 
using KBr (potassium bromide) pellets with a ratio of 1:10. 
The authors considered the carbon-hydrogen bond (-CH) 
constant in the GFRP and used the OH/CH ratio as an 
indicator of moisture absorption in the resin. The -OH was 
assigned a wavenumber of 3421 cm-1, and -CH, 2926 cm-1. 
The authors also mention the importance of this analysis 
to understand the reduction of the Tg of resin, as moisture 
can plasticize the epoxy resin and, consequently, cause 
changes in Tg.

Thomason[38] in his review of polymeric GF sizing 
applied diffuse reflectance Fourier transform infrared 
(DRIFT) mode to analyze silanes and sizing used in the 
coating of plates and fibers. The author also referred that 
DRIFT mode was also carried out in a combination of XPS 
and CA to study the modification of chopped E-glass with 
long-chain alcohol adsorption.

Magalhães et al.[60] discusses DRIFT mode regarding 
the sampling depth degree, and that it is not recommended 
to characterize chemically the surface of VectranTM fibers, 
as it is not considered a selective mode for this purpose. 
According to the authors, other ways of obtaining spectra 
by reflection, such as ATR or universal attenuated total 
reflection (UATR), or obtaining spectra by photoacoustic 
spectroscopy (PAS) detection could be more appropriate to 
investigate surface treatment in fibers.
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Another important type of synthetic fiber used worldwide 
to reinforce polymer composite is Kevlar, as these fibers are 
considered chemically inert and present high tenacity[61,62]. 
However, Kevlar fibers have a smooth surface, and this 
physical characteristic requires a surface modification, 
according to the matrix to be used with them. For this 
reason, Lin[61] studied the grafting of Kevlar fiber surfaces 
with bromoacetic acid at 50°C/10h, and epichlorohydrin at 
25°C/8h. Infrared spectroscopy showed the presence of the 
carboxyl group (1750 cm-1) when the fiber was treated bay 
bromoacetic acid and the epoxy group (2990 cm-1) with 
epichlorohydrin treatment. According to the results presented 
by the spectra, it seems that the reflection mode was carried 
out to perform this experiment and this shows the importance 
of the technique to solve the surface characterization of fibers.

Kondo et al.[63] also applied FT-IR ATR mode to 
identify the grafting of 3-Acryloxypropyltrimethoxysilane 
(APTMS) by electron beam irradiation in PET (polyethylene 
terephthalate) fibers, using C=C in the vinyl group of APTMS 
as a marker with an absorption peak at 1639 cm-1 to accuse 
the surface presence of APTMS. This was corroborated by 
SEM/EDS analysis, which provided a mapping of silicon 
(Si), fundamental to confirm the uniform coating of siloxane 
linkage by electron beam irradiation.

Especially in natural fiber composites, moisture or 
the presence of humidity can negatively influence the 
mechanical properties of the composite, as it can lead to 
interface degradation. It happens for the natural fibers 
have hydrophilic properties, and absorb more water than 
the resin normally used in this type of natural FRP; this 
condition reflecting in swelling of fibers, micro-cracking 
in the composite, and loss of interfacial adhesion due to the 
stress induced by water absorption. This results in a lack 
of adhesion[41,55]. Another drawback is less durability due 
to high moisture and chemical absorption[12].

It is recommended to use the reflection techniques, such 
as UATR or ATR rather than the transmission technique to 
evaluate the influence humidity, as reflection techniques do 
not need to prepare a KBr pellet, which could absorb more 
humidity and influence the final result.

Wang et al.[43], studying bars of basalt, GF, and CF-reinforced 
polymer composites candidates as replacements for steel, 
pointed out an accelerated test of these composites in 
seawater and sea sand concrete, applying FT-IR to assess 
the degradation mechanism. They used ATR mode, and the 
region of hydroxyl stretching (O-H) at 3400 cm-1 was studied 
to understand the indicative of water absorption during the 
wet-dry cycles purposed by the article.

Bansal et al.[64] studied NFRPCs based on bamboo, jute, 
and coir fibers, with an epoxy resin in random orientations, 
and discussed the characterization of matrix by FT-IR, applied 
as a method to differentiate the samples according to the 
mixture of fibers. Bands related to each type of fiber were 
detected and they can be used for diagnostic differentiation.

Ramachandran et al.[65] studied bamboo, banana, and 
linen fibers cut into 2-4 mm of length, with epoxy resin in 
random orientations. In order to characterize the natural 
fibers, the authors also carried out FT-IR but did not describe 
the sample preparation and mode of analysis, as well as the 
previous study[64]. FT-IR studies have particular conditions 

and preparations, with different modes available to obtain 
a spectrum. It is recommended to describe this information 
to understand the real conditions and achieve the same 
quality of spectrum as the authors. Any modification of 
condition, preparation, or mode could impact the result of 
the spectrum, thus these descriptions contribute significantly 
to the information of a scientific article.

Furthermore, NFRPCs have used coupling agents 
or compatibilizers to improve the interface between the 
polymer and natural fiber fillers. Maleic anhydride is 
commonly used in NFRPCs, being a component able to 
bond hygroscopic cellulose with a hydrophobic polymer, 
due to the reaction of anhydride and hydroxyl groups of 
cellulose with ester bonds or secondary interactions of 
H-bond. Bajwa et al.[66] used FT-IR with a photoacoustic 
detector to analyze biochar and oakwood flour as fillers of 
PLA (polylactic acid) and HDPE (high-density polyethylene) 
matrices. FT-IR photoacoustic spectroscopy, a non-destructive 
and near-surface technique, is normally used to analyze 
infrared spectra of dark samples, once this type of spectroscopy 
is based on a physical process combining acoustic signal 
generation and radiation energy absorption regardless of the 
IR transmission intensity to the detector[66-69].

Senophiyah-Mary and Loganath[70] used printed circuit 
border (PCB) to obtain carbonaceous slag to reinforce PVA, 
as an alternative for a membrane used to treat domestic or 
industrial wastewater. This is an example of FRP performed 
by electro-spinning used to synthesize a nanofiber membrane. 
The FT-IR using transmission mode with potassium bromide 
pellet associated with Raman spectroscopy allowed to 
demonstrate that carbonization can transform thermoset 
polymers derived from PCB into useful activated carbon. 
In this study, Raman added value to carbonaceous formations 
as the results of the spectrum showed the presence of bands 
of carbon at 1336-1604 cm-1.

Ji et al.[71] verified the interference of increasing temperature 
in the curing of amino silane coupling agent by monitoring 
the shift of amine functional group N-H (1596 to 1566 cm-1) 
bands. The absorption in the region of C=O (1660 cm-1) due 
to the reaction of the amino group with CO2 (carbon dioxide) 
and H2O (water) was observed. Other important regions in 
the reaction of silanization on the surface were related to 
Si-OH (3355 cm-1) and Si-O-Si (1000 - 1100 cm-1).

In addition, FT-IR could be coupled to TGA, and the 
analysis of volatile pyrolysis gases can be performed using a 
heated transfer line and appropriate cell to receive the gases. 
Perret et al.[72] carried out experiments with this technique 
to study flame retardants in CF epoxy resins, and used 
condensed-product analysis at different phases of thermal 
decomposition.

A short review of VectranTM fiber explored some conditions 
and modes of FT-IR in the fiber field. This study also brings 
concepts of different modes of acquisition of infrared spectra 
and discusses the sample depth degree according to the chosen 
mode, focused on the surface analysis by FT-IR techniques, 
such as ATR, UATR, DRIFT, NIR, NIRA (near-infrared 
reflectance analysis), FT-IR microscopy and PAS[60]. In addition, 
VectranTM fibers are very important in aerospace and military 
fields because of their high mechanical performance, and these 
fibers are applied in FRP composites with epoxy matrix[73].
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According to Magalhães et al.[60], it is well known 
that the studies involving NIR region regularly are 
associated with chemometrics and algorithm based, 
increasing the complexity of performing such analysis. 
However, with the advent of transflectance analysis, such 
as NIRA, polymer analysis could be performed directly 
in the equipment without any preparation of the sample, 
being non-destructive and with the advantage of being 
considered with high penetration of IR (infrared) beams, 
and high resolution.

After scrutinizing SEM, SEM/EDS, DSC, TGA, and 
FT-IR performed in FRP composites, Table 1 presents 
the principal applications of each instrumental technique 
addressed in this review.

Given the importance of experimental conditions, 
different materials performing important roles in the FRP 
composites, and the array of advanced technologies available 
to characterize these materials, this review was carried out 
to study fiber reinforcement interaction with matrix, future 
trends, and principal characterization techniques involved 
in FRP studies. Different FRP composite configurations 
found in the literature were listed in Table 2 with techniques 
performed in the related composites. All FT-IR analyses 
were carried out in MIR.

6. Trend

According to the studies reviewed, there is an 
opportunity related to expanding of the use of FT-IR 
techniques to characterize polymers, further exploring the 
NIR region and reflectance techniques (such as NIRA). As 
the spectrum obtained by NIR brings overtone responses 

and combination bands, this region is also important to 
FRP characterization, especially when quantitative studies 
have to be carried out[60].

According to Table 2, some articles report using AFM 
(atomic force microscopy) to acquire images of FRP 
composites, which presents some advantages when coupled 
with IR spectroscopy. Nguyen-Tri et al.[105] described some 
principles of AFM-IR (atomic force microscopy-based 
infrared spectroscopy), as well as the correlation between 
this technique and the chemical characterization of polymers, 
including crystallization mechanisms, phase separation, and 
spherulitic structures.

The use of recycled materials, such as CF, has 
attracted attention as it repurposes waste materials in the 
end-of-life phase, as well as reduces energy consumption. 
Fernández et al.[102] studied recycled CF as reinforcement 
material with PP (polypropylene) by injection process, 
and suggest that composites made with recycled materials 
have similar mechanical properties of composites with 
virgin CF. However, further developments in sizing 
fiber surfaces could bring more benefits to the use of 
this eco-friendly material. This study also brings the 
state-of-the-art on fiber orientation and fiber distribution 
analysis in composites, using a modern technique of 
X-ray tomography.

Furthermore, this review reveals a trend in natural 
sources to develop FRP, as the concerns with sustainability 
and green alternatives are rising. As an alternative to 
synthetic material, it has already been reported that 
bio-based composites are considerably environment-
friendly which can reduce the cost, weight of structure, 
and environmental impacts.

Table 1. Principal instrumental techniques to characterize FRP composites and applications.

Technique Applications Ref.

SEM Morphological assessment; fiber sizing analysis; evaluation of interaction between fibers and matrix; 
investigation of failures, fractures, adhesion, gaps, corrosion, and deformation.

[29, 34, 41-44, 74-84]

SEM/EDS Elemental analysis of surfaces after treatment; identification of ratios and chemical composition. [35, 45, 82, 85-87]

DSC Determination of phase transition, mainly Tg temperature in the matrix; evaluation of matrix 
curing process; curing degree.

[24, 36, 46-51, 78-80, 88-90]

TGA Determination of fiber content; evaluation of thermal stability of composites; assessment of 
thermal decomposition of materials; characterization of the effects of dehydration and oxidation 

on material.

[34, 46, 52-56, 78, 80, 84, 91]

FT-IR Fiber and matrix characterization; assessment of chemical changes, after surface modification 
of fiber or matrix through specific molecular vibration absorption; relationship between 

amount of surface treatment of fibers and intensity of infrared absorption ratio in IR spectra; 
fiber sizing analysis*; degradation studies; aging or stability studies of FRP; water absorption in 

FRP development; non-destructive analyses: DRIFT, PAS, ATR, microscopy; destructive analysis: 
KBr pellet analyzed by transmission mode.

[12, 34, 38, 41, 43, 51, 55-73, 82, 84, 92, 93]

* using microscopy features of FT-IR spectrometer coupled with microscopy.
Siglas: SEM: Scanning electron microscopy; SEM/EDS: Scanning electron microscopy/energy-dispersive X-ray spectroscopy; DSC: Differential 
scanning calorimetry; TGA: Thermogravimetric analysis; FT-IR: Fourier transform-infrared spectroscopy; IR: Infrared; FRP: Fiber-reinforced 
polymer; DRIFT: Diffuse reflectance Fourier transform infrared; PAS: Photoacoustic spectroscopy; ATR: Attenuated total reflection; 
KBr: Potassium bromide.
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Table 2. FRP composites and characterization techniques with instrumental analysis.

Fiber phase Matrix phase Analysis Ref.
Glass/Kevlar fibers Epoxy resin DSC, SEM, TGA [94]

Coconut fiber PP SEM [95]

Short GF PBT DSC, SEM [96]

GF PP/EPDM DSC, SEM, TGA, WAXD [97]

GF and CF Epoxy resin SEM, TGA [54]

GF Epoxy resin AFM, SEM [98]

Cellulose whisker PVA DMA, DSC, SEM [99]

PET fiber Natural rubber FT-IR, SEM/EDS [63]

GF Epoxy and polyester resin SEM [7]

Natural fibers Polypropylene FT-IR, SEM/EDS, TGA, UV-VIS [35]

CF Epoxy resin DMA, FT-IR, TGA [72]

Kenaf fiber TPU FT-IR, SEM [41]

CF Phenolic resin FT-IR, LRS, SEM, XPS [9]

Natural fibers Epoxy resin FT-IR [65]

GF Epoxy resin DSC, FT-IR, GPC, titration [49]

Nylon-6 UV curable polymer SEM [29]

BF, GF, and CF Epoxy resin FT-IR, SEM [43]

Natural fibers Epoxy resin FT-IR [64]

GF fabric Polyampholyte gel, NaSS, and DMAEA-Q SEM [28]

Kevlar fibers and CF Polybenzoxazine resins FT-IR, SEM, TGA [55]

GF PAAm DMA, SEM [42]

UHMWPE RPU CA, FT-IR, SEM [100]

Lignocellulose fiber Ethylene-norbornene copolymer AFM, DLS, DMA, DSC, FT-IR, TGA [19]

GF and flax fibers Epoxy resin DSC, FT-IR, SEM, TGA [36]

GF Epoxy resin DSC, FT-IR, SEM/EDS [51]

GF PEN-BAPh DSC, DRA, FT-IR, SEM, TGA, UV-VIS [31]

MWCNT-coated BF Epoxy resin FT-IR, LRS, SEM, XPS [33]

Wood fiber HDPE and PLA DMA, FT-IR, SEM, TGA [66]

CF ABS FT-IR, SEM, TGA [34]

CF Epoxy resin DMA, FT-IR, SEM [44]

Short CF Cellulose; PA 6 and PP DSC, SEM, TGA,XPS [25]

Sugarcane fibers PP SEM [101]

CF Epoxy resin DSC, FT-IR, Rheology, TGA [89]

CF PEEK-Ti laminates FT-IR, SEM, XPS [71]

GF and flax fibers Epoxy resin DSC, FT-IR, SEM, TGA [56]

Carbonaceus slag from thermoset PVA AFM, FT-IR, LRS, TGA [70]

Natural fiber and GF Vinyl Ester DSC, TGA [88]

Flax fiber Polyester 1H NMR, FT-IR, SEM/EDS [82]

CF PEEK AFM, FT-IR, SEM/EDS, XPS, WCA [87]

BF HDPE FT-IR, DSC, SEM/EDS, TGA [92]

Bagasse fiber Cardanol FT-IR, SEM, TGA [84]

Recycled CF PP and PP-MAH DSC, SEM, TGA, XCT, XPS [102]

CF Epoxy resin AFM, FT-IR, SEM/EDS [58]

Flax fiber / PLA woven Epoxy resin DMA, DSC, SEM, TGA [80]

CF Epoxy resin doped with graphene oxide DLS, FT-IR, Raman, SEM [103]

Jute fiber Bio-based vanillin-derived epoxy FT-IR, NMR, SEM, tensile test, TGA, WCA [104]

Siglas: DSC: Differential scanning calorimetry; SEM: Scanning electron microscopy; TGA: Thermogravimetric analysis; PP: Polypropylene; 
GF: Glass fibers; PBT: Poly(butylene terephthalate); EPDM: Ethylene–propylene–diene terpolymer; WAXD: Wide-angle X-ray diffraction; 
CF: Carbon fibers; AFM: Atomic force microscopy; PVA: Polyvinyl alcohol; DMA: Dynamic mechanical analysis; PET: Polyethylene 
terephthalate; FT-IR: Fourier transform-infrared spectroscopy; SEM/EDS: Scanning electron microscopy/energy-dispersive X-ray spectroscopy; 
UV-VIS: Ultraviolet and visible spectroscopy; TPU: Thermoplastic polyurethane; LRS: Laser Raman scattering; XPS: X-ray photoelectron 
spectroscopy; GPC: Gel permeation chromatography; UV: Ultraviolet; BF: Basalt fibers; NaSS: Copolymerized from sodium p-styrenesulfonate; 
DMAEA-Q: Dimethylaminoethylacrylate quaternized ammonium; PAAm: Polyacrylamide; UHMWPE: Ultra-high molecular weight 
polyethylene; RPU: Rigid polyurethane; CA: Contact angle; DLS: Dynamic light scattering; PEN-BAPh: Phthalonitrile containing aromatic 
ether nitrile linkage; DRA: Dynamic rheological analysis; MWCNT: Multi-walled carbon nanotube; HDPE: High-density polyethylene; 
PLA: Polylactic acid; ABS: Acrylonitrile butadiene styrene; PA: Polyamide; PEEK-Ti: Polyetheretherketone-titanium; 1H NMR: Proton nuclear 
magnetic resonance spectroscopy; PEEK: Polyetheretherketone; WCA: Water contact angle; PP-MAH: Maleic anhydride grafted polypropylene; 
XCT: X-ray computed assisted tomography; NMR: nuclear magnetic resonance.
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7. Conclusion

FRP composites are very important materials in many 
fields of science and technology, with several studies being 
developed to create more resistant, sustainable, and advanced 
materials. Studies with natural fibers including plants, and 
mineral fibers or matrices based on cellulose have been 
developed to contribute to more ecological alternatives 
for the near future.

A comprehensive review was conducted in FRP 
composites investigating the principal characterization 
techniques performed to study new developments on these 
composites, including aging or stability testing, sizing on 
fibers, interfacial properties between matrix and fibers, and 
material treatment.

SEM, SEM/EDS, DSC, TGA, FT-IR, and other analytical 
techniques were discussed, and many applications to study 
FRP composites were proposed. Through the reviewed 
experimental studies, it is possible to conclude that two 
or more associated techniques provide more support for 
composite development.

Finally, this review provides a systematic understanding 
of FRP composite applications for the development and 
characterization of these materials, as well as bringing the 
latest advances in this segment of material science.
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