Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.2423
Polímeros: Ciência e Tecnologia
Original Article

Thermal degradation of polymer systems having liquid crystalline oligoester segment

Matroniani, Renato; Wang, Shu Hui

Downloads: 0
Views: 61

Abstract

Block copolymers and blends comprised by liquid crystalline oligoester and polystyrene were prepared and their thermal stability were characterized by thermogravimetric analysis (TGA). The samples have shown three main decomposition temperatures due to (1) lost of flexible chain and decomposition of mesogenic segment, (2) decomposition of polystyrene and (3) final decomposition of oligoester rigid segment. Both copolymers and polymer blends presented lower thermal stability compared to polystyrene and oligoester. The residual mass after heating at 600 °C in copolymers and polymer blends were lower than those found in the oligoesters. A degradative process of aromatic segments of oligoester induced by decomposition of polystyrene is suggested.

Keywords

blends, liquid crystalline oligoester, thermal degradation, thermal stability.

References

1. Jin, X., & Chung, T. S. (1999). Thermal decomposition behavior of main-chain thermotropic liquid crystalline polymers, vectra A-950, B-950, and Xydar SRT-900. Journal of Applied Polymer Science, 73(11), 2195-2207. http://dx.doi.org/10.1002/(SICI)1097-4628(19990912)73:11<2195::AID-APP17>3.0.CO;2-3.

2. Mandal, P. K., Siddhanta, S. K., & Chakraborty, D. (2011). Engineering properties of compatibilized polypropylene/liquid crystalline polymer blends. Journal of Applied Polymer Science, 124(6), 5279-5285.

3. Wei, P., Wang, L., Wang, X. H., Chen, Y. W., Wang, Y. P., & Wang, Y. M. (2014). Nonisothermal and isothermal oxidative degradation behavior of thermotropic liquid crystal polyesters containing kinked bisphenol AF and bisphenol A units. High Performance Polymers, 26(8), 935-945. http://dx.doi.org/10.1177/0954008314535645.

4. Chi, Z. G., Yao, X. D., Zhang, Y., & Xu, J. R. (2005). Thermal decomposition kinetics of thermotropic liquid crystalline polyesterimides. Journal of Applied Polymer Science, 98(6), 2467-2472. http://dx.doi.org/10.1002/app.22447.

5. Mithal, A. K., Tayebi, A., & Lin, C. H. (1991). In situ composite fibers: Blends of liquid crystalline polymer and poly (ethylene terephthalate). Polymer Engineering and Science, 31(21), 1533-1538. http://dx.doi.org/10.1002/pen.760312105.

6. Mehta, S., & Deopura, D. L. (1993). Fibers from blends of PET and thermotropic liquid-crystalline polymer. Polymer Engineering and Science, 33(14), 931-936. http://dx.doi.org/10.1002/pen.760331410.

7. Shin, B. Y., & Chung, I. J. (1990). Polymer blend containing a thermotropic polyester with long flexible spacer in the main chain. Polymer Engineering and Science, 30(1), 22-29. http://dx.doi.org/10.1002/pen.760300105.

8. Shin, B. Y., Jang, S. H., Chung, I. J., & Kim, B. S. (1992). Mechanical-properties and morphology of polymer blends of poly(ethylene-terephthalate) and semiflexible thermotropic liquid-crystalline polyesters. Polymer Engineering and Science, 32(1), 73-79. http://dx.doi.org/10.1002/pen.760320112.

9. Heitz, T., Rohrbach, P., & Höcker, H. (1989). Rigid rods with flexible side-chains - a route to molecular reinforcement. Macromolecular Chemistry and Physics, 190(12), 3295-3316. http://dx.doi.org/10.1002/macp.1989.021901226.

10. Kobayashi, T., Sato, M., Takeno, N., & Mukaida, K. (1992). Synthesis and liquid crystallinity of thermotropic polycarbonate-polystyrene graft-copolymers. European Polymer Journal, 28(9), 1105-1110. http://dx.doi.org/10.1016/0014-3057(92)90062-7.

11. Lum, R. M. (1979). Thermal-decomposition of poly(butylene terephthalate). Journal of Polymer Science. Part A, Polymer Chemistry, 17(1), 203-213. http://dx.doi.org/10.1002/pol.1979.170170120.

12. Foti, S., Giuffrida, M., Maravigna, P., & Montaudo, G. (1984). Direct mass-spectrometry of polymers. 11. Primary thermal fragmentation processes in aromatic aliphatic polyesters. Journal of Polymer Science. Part A, Polymer Chemistry, 22(6), 1217-1229. http://dx.doi.org/10.1002/pol.1984.170220602.

13. Montaudo, G., Puglisi, C., Scamporrino, E., & Vitalini, D. (1986). Thermal degradation of aromatic-aliphatic polyethers. 1. Direct pyrolysis-mass spectrometry. Macromolecules, 19(3), 870-882. http://dx.doi.org/10.1021/ma00157a067.

14. McNeill, I. C., Zulfiqar, M., & Kousar, T. (1990). A detailed investigation of the products of the thermal-degradation of polystyrene. Polymer Degradation & Stability, 28(2), 131-151. http://dx.doi.org/10.1016/0141-3910(90)90002-O.

15. Wang, S. H., Coutinho, F. M. B., Galli, G., & Chielllini, E. (1996). Copolímeros em bloco termotrópicos poliestireno – Poli(Metil-1,4-Dioxifenileno-4,4-Dicarbonil-1,10-Dibenzoil-Oxi-Decano): 1. Síntese e caracterização. Polímeros: Ciência e Tecnologia, 6(4), 38-44.

16. Wang, S. H., Coutinho, F. M. B., Galli, G., & Chiellini, E. (1995). Synthesis and characterization of polystyrene-polyester liquid-crystalline block-copolymers. Polymer Bulletin, 34(5-6), 531-537. http://dx.doi.org/10.1007/BF00423348.

17. Ellis, G., Marco, C., del Pino, J., & Goméz, M. A. J. (1998). Thermal stability and degradation mechanism for two main-chain liquid crystal polyesters - A TG-MS study. Journal of Thermal Analysis and Calorimetry, 52(3), 683-695. http://dx.doi.org/10.1023/A:1010185817984.

5b7c18430e8825ac11896e56 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections