Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Microalgae biopeptides applied in nanofibers for the development of active packaging

Gonçalves, Carolina Ferrer; Schmatz, Daiane Angelica; Uebel, Lívia da Silva; Kuntzler, Suelen Goettems; Costa, Jorge Alberto Vieira; Zimmer, Karine Rigon; Morais, Michele Greque de

Downloads: 0
Views: 42


This study was conducted to develop PCL nanofibers with the incorporation of microalgae biopeptides and to evaluate the stability of chicken meat cuts during storage. PCL and PCL/biopeptides nanofibers were formed by electrospinning method, and the diameters obtained were 404 and 438 nm, respectively. The tensile strength, elongation, melting temperature and thermal stability of biopeptide-added PCL nanofibers were 0.245 MPa, 64%, 56.8 °C and 318 °C, respectively. PCL/biopeptide nanofibers showed a reducing power of 0.182, inhibition of 22.6% and 12.4% for DPPH and ABTS radicals, respectively. Chicken meat cuts covered by the PCL/biopeptide nanofibers showed 0.98 mgMDA∙kg-1 and 25.8 mgN∙100g-1 for TBARS and N-BVT analysis, respectively. Thus, the PCL/biopeptide nanofibers provided greater stability to the product and control of oxidative processes ensuring the product quality maintenance during the 12 d of storage.


antioxidants, electrospinning, poly-ɛ-caprolactone.


1. Osawa, C. C., Felício, P. E., & Gonçalves, L. A. G. (2005). Teste de tba aplicado a carnes e derivados: métodos tradicionais, modificados e alternativos. Quimica Nova, 28(4), 655-663. http://dx.doi.org/10.1590/S0100-40422005000400019.

2. Radha krishnan, K., Babuskin, S., Azhagu Saravana Babu, P., Sasikala, M., Sabina, K., Archana, G., Sivarajan, M., & Sukumar, M. (2014). Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International Journal of Food Microbiology, 171, 32-40. PMid:24308943. http://dx.doi.org/10.1016/j.ijfoodmicro.2013.11.011.

3. Alix, S., Mahieu, A., Terrie, C., Soulestin, J., Gerault, E., Feuilloley, M. G. J., Gattin, R., Edon, V., Ait-Younes, T., & Leblanc, N. (2013). Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. European Polymer Journal, 49(6), 1234-1242. http://dx.doi.org/10.1016/j.eurpolymj.2013.03.016.

4. Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4, 26-35. http://dx.doi.org/10.1016/j.fpsl.2015.03.003.

5. Martínez-Abad, A., Sánchez, G., Fuster, V., Lagaron, J. M., & Ocio, M. J. (2013). Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control, 34(1), 214-220. http://dx.doi.org/10.1016/j.foodcont.2013.04.025.

6. Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013-1021. PMid:23122157. http://dx.doi.org/10.1016/j.foodchem.2012.09.010.

7. Wu, J. C. C., Ray, S., Gizdavic-Nikolaidis, M., Uy, B., Swift, S., Jin, J., & Cooney, R. P. (2014). Nanostructured bioactive material based on polycaprolactone and polyaniline fiber-scaffolds. Synthetic Metals, 198, 41-50. http://dx.doi.org/10.1016/j.synthmet.2014.09.017.

8. Kim, S. K., & Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods, 2(1), 1-9. http://dx.doi.org/10.1016/j.jff.2010.01.003.

9. Morais, M. G., Vaz, B. S., Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed Research International, 2015, 835761. PMid:26339647. http://dx.doi.org/10.1155/2015/835761.

10. Lisboa, C. R., Pereira, A. M., Ferreira, S. P., & Costa, J. A. V. (2014). Utilisation of Spirulina sp. and Chlorella pyrenoidosa biomass for the production of enzymatic protein hydrolysates. Journal of Engineering Research and Applications, 4(1), 29-38.

11. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177-187. http://dx.doi.org/10.1016/j.jff.2009.01.007.

12. Mills, S., Stanton, C., Hill, C., & Ross, R. P. (2011). New developments and applications of bacteriocins and peptides in foods. Annual Review of Food Science and Technology, 2(1), 299-329. PMid:22129385. http://dx.doi.org/10.1146/annurev-food-022510-133721.

13. Bhushani, J. A., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food and Technology, 38(1), 21-33. http://dx.doi.org/10.1016/j.tifs.2014.03.004.

14. Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4ºC. Lebensmittel-Wissenschaft + Technologie, 53(2), 499-506. http://dx.doi.org/10.1016/j.lwt.2013.02.024.

15. Azeredo, H. M. C. (2013). Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, 30(1), 56-59. http://dx.doi.org/10.1016/j.tifs.2012.11.006.

16. Kim, M. S., & Kim, G. (2014). Three-dimensional electrospunpolycaprolactone (PCL)/alginatehybrid composite scaffolds. Carbohydrate Polymers, 114, 213-221. PMid:25263884. http://dx.doi.org/10.1016/j.carbpol.2014.08.008.

17. Morais, M. G., Radmann, E. M., Andrade, M. R., Teixeira, G. G., Brusch, L. R. F., & Costa, J. A. V. (2009). Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture, 294(1-2), 60-64. http://dx.doi.org/10.1016/j.aquaculture.2009.05.009.

18. Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysate from herring (Clupeaharengus). Journal of Food Science, 59(1), 76-79. http://dx.doi.org/10.1111/j.1365-2621.1994.tb06901.x.

19. American Society for Testing and Materials – ASTM. (2010). ASTM E986–04: Standard practice for scanning electron microscope beam size characterization. West Conshohocken: ASTM.

20. American Society for Testing and Materials – ASTM. (2013). ASTM D7426–08: Standard test method for assignment of the DSC procedure for determining Tg of a polymer or an elastomeric compound. West Conshohocken: ASTM.

21. American Society for Testing and Materials – ASTM. (2013). ASTM D3850–12:Standard test method for rapid thermal degradation of solid electrical insulating materials by thermogravimetric method (TGA). West Conshohocken: ASTM.

22. Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomberaustriasicus). Food Research International, 36(9-10), 949-957. http://dx.doi.org/10.1016/S0963-9969(03)00104-2.

23. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant. Lebensmittel-Wissenschaft + Technologie, 28(1), 25-30. http://dx.doi.org/10.1016/S0023-6438(95)80008-5.

24. Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., Sampaio, C. G., Pérezjiménez, J., & Saura-Calixto, F. D. (2007). Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS+ (Comunicado técnico 128). Fortaleza: EMBRAPA.

25. Crackel, R. L., Gray, I. J., Pearson, A. M., Booren, A. M., & Buckley, O. J. (1988). Some further observations on the TBA. Test as an index of lipid oxidation in meats. Food Chemistry, 28(3), 187-196. http://dx.doi.org/10.1016/0308-8146(88)90050-7.

26. Association of Official Analytical Chemists – AOAC. (1990). AOAC: Official methods of analysis. Washington: AOAC.

27. Collins, G., Federici, J., Imura, Y., & Catalani, L. H. (2012). Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. Journal of Applied Physics, 111(2), 047701. http://dx.doi.org/10.1063/1.3682464.

28. Ranjbar-Mohammadi, M., & Bahrami, S. H. (2015). Development of nanofibrous scaffolds containing gum tragacanth/poly(ε-caprolactone) for application as skin scaffolds. Materials Science and Engineering C, 48, 71-79. PMid:25579898. http://dx.doi.org/10.1016/j.msec.2014.10.020.

29. Goes, A. M., Carvalho, S., Oréfice, R. L., Avérous, L., Custódio, T. A., Pimenta, J. G., Souza, M. B., Branciforti, M. C., & Bretas, R. E. S. (2012). Viabilidade celular de nanofibras de polímeros biodegradáveis e seus nanocompósitos com argila montmorilonita. Polímeros: Ciência e Tecnologia, 22(1), 34-40. http://dx.doi.org/10.1590/S0104-14282012005000012.

30. Campos, A., Marconato, J. C., & Franchetti, S. M. M. (2010). Biodegradação de filmes de PP/PCL em solo e solo com chorume. Polímeros: Ciência e Tecnologia, 20(4), 295-300. http://dx.doi.org/10.1590/S0104-14282010005000039.

31. Wang, X., Haibin, Z., & Turng, L. S. (2013). Crystalline morphology of electrospunPoly(ε-caprolactone) (PCL) nanofibers. Industrial & Engineering Chemistry Research, 52(13), 4939-4949. http://dx.doi.org/10.1021/ie302185e.

32. Ciardelli, G., Chiono, V., Vozzi, G., Pracella, M., Ahluwalia, A., Barbani, N., Cristallini, C., & Giusti, P. (2005). Blends of poly-(ɛ-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules, 6(4), 1961-1976. PMid:16004434. http://dx.doi.org/10.1021/bm0500805.

33. Patrício, T., Domingos, M., Gloria, A., D’amora, U., Coelho, J. F., & Bártolo, P. J. (2014). Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal, 20(2), 145-156. http://dx.doi.org/10.1108/RPJ-04-2012-0037.

34. Duarte, M. A. T., Hugen, R. G., Martins, E. S., Pezzin, A. P. T., & Pezzin, S. H. (2006). Thermal and Mechanical behavior of injection molded poly(3-hydroxybutyrate)/poly(ε-caprolactone) blends. Materials Research, 9(1), 15-27. http://dx.doi.org/10.1590/S1516-14392006000100006.

35. Johnson, J., Niehaus, A., Nichols, S., Lee, D., Koepsel, J., Anderson, D., & Lannutti, J. (2009). Electospun PCL in vitro: a microstructural basis for mechanical property changes. Journal of Biomaterials Science, 20(4), 467-481. PMid:19228448. http://dx.doi.org/10.1163/156856209X416485.

36. Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nesr-Esfahani, M. H., & Ramakrishna, S. (2008). Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34), 4532-4539. PMid:18757094. http://dx.doi.org/10.1016/j.biomaterials.2008.08.007.

37. Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13), 3419-3425. PMid:19299123. http://dx.doi.org/10.1016/j.biortech.2009.02.014.

38. Cían, R. E., Martínez-Augustin, O., & Drago, S. R. (2012). Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyracolumbina. Food Research International, 49(1), 364-372. http://dx.doi.org/10.1016/j.foodres.2012.07.003.

39. Rhim, J. W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008.

40. Counsell, J. N., & Horning, D. H. (Eds.) (1981). Vitamin C (ascorbis acid) (Chap. 7). London: Applied Science Ltd..

41. Bazargani-Gilani, B., Aliakbarlu, J., & Tajik, H. (2015). Effect of pomegranate fruit juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the quality shelf life of chicken breast meat during refrigerated storage. Innovative Food Science and Emerging Technologies, 29, 280-287.

42. Brasil. Ministério da Agricultura Pecuária e Abastecimento. (1980). Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal. (RIISPOA). Brasília: MAPA.

5b7c178f0e8825da0c896e68 polimeros Articles
Links & Downloads


Share this page
Page Sections