Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Green polyurethane synthesis by emulsion technique: a magnetic composite for oil spill removal

Costa, Raphael Maria Dias da; Hungerbühler, Gabriela; Saraiva, Thiago; Jong, Gabriel De; Moraes, Rafael Silva; Furtado, Evandro Gonçalves; Silva, Fabrício Machado; Oliveira, Geiza Esperandio de; Ferreira, Luciana Spinelli; Souza Junior, Fernando Gomes de

Downloads: 0
Views: 68


After the consolidation of the Brazilian biodiesel industry, issues related to the final destination of the glycerin, the by-product from the biodiesel industrial process, drawing the attention of several researchers. There are several uses to this byproduct. Among them, the obtaining of polymers, such as polyurethane (PU), are very encouraged since the glycerin ca be used, as well as the castor oil, in the replacement of petrochemical polyols. The aim of this work was to propose a new route for the obtainment of a petroleum sorbent based on polyurethane resin from glycerin and castor oil, through the emulsion technique. In addition, maghemite (γ-Fe2O3) was mixed to the polymer matrix, producing a magnetic composite, able to make easier the oil cleanup process. The products synthesized were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, simultaneous Thermogravimetry (TGA) and Differential scanning calorimetry (DSC), Optical microscopy, Scanning electron microscopy (SEM). In addition, magnetic force and oil removal capability tests were also performed. The magnetic material was used to remove oil from water, exhibited a good oil removal capability. In a typical test, 1g of the composite containing 5wt% of maghemite was able to remove 10g of oil from water.


green polyurethanes, glycerin, castor oil, maghemite, magnetic composites.


1. Pinto, A. C., Guarieiro, L. L. N., Rezende, M. J. C., Ribeiro, N. M., Torres, E. A., Lopes, W. A., Pereira, P., & Andrade, J. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16(6B), 1313-1330. http://dx.doi.org/10.1590/S0103-50532005000800003.

2. Padula, A. D., Santos, M. S., Ferreira, L., & Borenstein, D. (2012). The emergence of the biodiesel industry in Brazil: current figures and future prospects. Energy Policy, 44, 395-405. http://dx.doi.org/10.1016/j.enpol.2012.02.003.

3. Leoneti, A. B., Aragão-Leoneti, V., & Oliveira, S. V. W. B. (2012). Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renewable Energy, 45, 138-145. http://dx.doi.org/10.1016/j.renene.2012.02.032.

4. Raquez, J.-M., Deléglise, M., Lacrampe, M.-F., & Krawczak, P. (2010). Thermosetting (bio)materials derived from renewable resources: a critical review. Progress in Polymer Science, 35(4), 487-509. http://dx.doi.org/10.1016/j.progpolymsci.2010.01.001.

5. Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers, 2(4), 440-453. http://dx.doi.org/10.3390/polym2040440.

6. Manjula, K., Satheesh Kumar, M., Soare, B. G., Picciani, P., & Siddaramaiah, (2010). Biobased chain extended polyurethane and its composites with silk fiber. Polymer Engineering and Science, 50(4), 851-856. http://dx.doi.org/10.1002/pen.21604.

7. Yang, J. S., Cho, S. M., Kim, B. K., & Narkis, M. (2005). Structured polyurethanes for oil uptake. Journal of Applied Polymer Science, 98(5), 2080-2087. http://dx.doi.org/10.1002/app.22419.

8. Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Marine Pollution Bulletin, 64(8), 1648-1653. PMid:22749062. http://dx.doi.org/10.1016/j.marpolbul.2012.05.039.

9. Lopes, M. C., Souza, F. G., Jr., & Oliveira, G. E. (2010). Espumados magnetizáveis úteis em processos de recuperação ambiental. Polímeros: Ciência e Tecnologia, 20(5), 359-365. http://dx.doi.org/10.1590/S0104-14282010005000054.

10. Peng, L., Yuan, S., Yan, G., Yu, P., & Luo, Y. (2014). Hydrophobic sponge for spilled oil absorption. Journal of Applied Polymer Science, 131(20), 1. http://dx.doi.org/10.1002/app.40886.

11. Li, H., Wu, W., Bubakir, M. M., Chen, H., Zhong, X., Liu, Z., Ding, Y., & Yang, W. (2014). Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. Journal of Applied Polymer Science, 131(7), 1. http://dx.doi.org/10.1002/app.40080.

12. Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340-1346. PMid:15946707. http://dx.doi.org/10.1016/j.marpolbul.2005.04.043.

13. Philippova, O., Barabanova, A., Molchanov, V., & Khokhlov, A. (2011). Magnetic polymer beads: recent trends and developments in synthetic design and applications. European Polymer Journal, 47(4), 542-559. http://dx.doi.org/10.1016/j.eurpolymj.2010.11.006.

14. Zanetti-Ramos, B. G., Lemos-Senna, E., Soldi, V., Borsali, R., Cloutet, E., & Cramail, H. (2006). Polyurethane nanoparticles from a natural polyol via miniemulsion technique. Polymer, 47(24), 8080-8087. http://dx.doi.org/10.1016/j.polymer.2006.09.057.

15. Costa, R. C., & Souza, F. G. (2014). Preparo de nanocompósitos maghemita e polianilina assistido por ultrassom. Polímeros: Ciência e Tecnologia, 24(2), 243-249. http://dx.doi.org/10.4322/polimeros.2014.035.

16. de Souza, F., Marins, J., Pinto, J., de Oliveira, G., Rodrigues, C., & Lima, L. (2010). Magnetic field sensor based on a maghemite/polyaniline hybrid material. Journal of Materials Science, 45(18), 5012-5021. http://dx.doi.org/10.1007/s10853-010-4321-y.

17. Elias, E., Costa, R., Marques, F., Oliveira, G., Guo, Q., Thomas, S., & Souza, F. G., Jr. (2015). Oil-spill cleanup: the influence of acetylated curaua fibers on the oil-removal capability of magnetic composites. Journal of Applied Polymer Science, 132(13), 1. PMid:25866416. http://dx.doi.org/10.1002/app.41732.

18. Gomes de Souza, F., Jr., Marins, J. A., Rodrigues, C. H. M., & Pinto, J. C. (2010). A magnetic composite for cleaning of oil spills on water. Macromolecular Materials and Engineering, 295(10), 942-948. http://dx.doi.org/10.1002/mame.201000090.

19. Oliveira, G. E., Clarindo, J. E. S., Santo, K. S. E., & Souza, F. G., Jr. (2013). Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent. Materials Research, 16(3), 668-671. http://dx.doi.org/10.1590/S1516-14392013005000048.

20. Pereira, E. D., Souza, F. G., Jr., Santana, C. I., Soares, D. Q., Lemos, A. S., & Menezes, L. R. (2013). Influence of magnetic field on the dissolution profile of cotrimoxazole inserted into poly(lactic acid-co-glycolic acid) and maghemite nanocomposites. Polymer Engineering and Science, 53(11), 2308-2317. http://dx.doi.org/10.1002/pen.23606.

21. Neves, J. S., Souza, F. G., Jr., Suarez, P. A. Z., Umpierre, A. P., & Machado, F. (2011). In situ production of polystyrene magnetic nanocomposites through a batch suspension polymerization process. Macromolecular Materials and Engineering, 296(12), 1107-1118. http://dx.doi.org/10.1002/mame.201100050.

22. Souza, F. G., Jr., Ferreira, A. C., Varela, A., Oliveira, G. E., Machado, F., Pereira, E. D., Fernandes, E., Pinto, J. C., & Nele, M. (2013). Methodology for determination of magnetic force of polymeric nanocomposites. Polymer Testing, 32(8), 1466-1471. http://dx.doi.org/10.1016/j.polymertesting.2013.09.018.

23. Varela, A., Oliveira, G., Souza, F. G., Jr., Rodrigues, C. H. M., & Costa, M. A. S. (2013). New petroleum absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polymer Engineering and Science, 53(1), 44-51. http://dx.doi.org/10.1002/pen.23229.

24. Grance, E. G. O., Souza, F. G., Jr., Varela, A., Pereira, E. D., Oliveira, G. E., & Rodrigues, C. H. M. (2012). New petroleum absorbers based on lignin‐CNSL‐formol magnetic nanocomposites. Journal of Applied Polymer Science, 126(S1), E305-E312. http://dx.doi.org/10.1002/app.36998.

25. Pereira, E. D., Souza, F. G., Jr., Pinto, J. C. C. S., Cerruti, R., & Santana, C. (2014). Synthesis, characterization and drug delivery profile of magnetic PLGA-PEG-PLGA/maghemite nanocomposite. Macromolecular Symposia, 343(1), 18-25. http://dx.doi.org/10.1002/masy.201300168.

26. Ferreira, L. P., Moreira, A. N., Delazare, T., Oliveira, G. E., & Souza, F. G., Jr. (2012). Petroleum absorbers based on CNSL, furfural and lignin: the effect of the chemical similarity on the interactions among petroleum and bioresins. Macromolecular Symposia, 319(1), 210-221. http://dx.doi.org/10.1002/masy.201100145.

27. Hu, L., Hach, D., Chaumont, D., Brachais, C.-H., & Couvercelle, J.-P. (2008). One step grafting of monomethoxy poly(ethylene glycol) during synthesis of maghemite nanoparticles in aqueous medium. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 330(1), 1-7. http://dx.doi.org/10.1016/j.colsurfa.2008.07.044.

28. Speight, J. G., & Ozum, B. (2001). Petroleum refining processes. Boca Raton: CRC Press.

29. Melpolder, F. W., Brown, R. A., Washall, T. A., Doherty, W., & Headington, C. E. (1956). Composition of lubricating oil use of newer separation and spectroscopic methods. Analytical Chemistry, 28(12), 1936-1945. http://dx.doi.org/10.1021/ac60120a035.

30. Stanford, L. A., Kim, S., Rodgers, R. P., & Marshall, A. G. (2006). Characterization of compositional changes in vacuum gas oil distillation cuts by electrospray ionization Fourier Transform-Ion Cyclotron Resonance (FT-ICR) mass spectrometry. Energy & Fuels, 20(4), 1664-1673. http://dx.doi.org/10.1021/ef060104g.

31. Klavins, M., Porshnov, D., Ansone, L., Robalds, A., & Dreijalte, L. (2012). Peat as natural and industrial sorbent. In R. A. R. Ramos, I. Straupe & T. Panagopoulos (Eds.). Recent researches in environment, energy systems & sustainability (pp. 146-151). Portugal: WSEAS Press.

5b7c16f70e8825700d896e56 polimeros Articles
Links & Downloads


Share this page
Page Sections