Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2371
Polímeros: Ciência e Tecnologia
Original Article

Gelatin capsule waste: new source of protein to develop a biodegradable film

Campo, Camila de; Pagno, Carlos Henrique; Costa, Tania Maria Haas; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

Downloads: 2
Views: 1177

Abstract

This work aimed to develop biodegradable films utilizing a new source of gelatin derived from the nutraceutical capsule manufacture waste of coconut with safflower oil, coconut oil and safflower oil. The mechanical, physicochemical, barrier, optical, biodegradation, thermal and morphological properties were evaluated. All films showed low water vapor permeability, intermediate water solubility and high elongation at break. In addition, the films exhibited excellent barrier ability to ultraviolet light. After 15 days of soil burial degradation, the films lost over 68% of initial weight. Scanning electron microscopy showed an appearance free of pores, cracks or bubbles. Furthermore the films showed similar characteristics independent of the waste utilized. The results demonstrated that all the biodegradable films prepared presented appropriate characteristics to be used as substitute to synthetic packaging.

Keywords

gelatin films, food packaging, nutraceutical capsules waste, environmental impact.

References

1. Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., & Porta, R. (2003). Preparation and mechanical properties of edible pectin–soy flour films obtained in the absence or presence of transglutaminase. Journal of Biotechnology, 102(2), 191-198. PMid:12697396. http://dx.doi.org/10.1016/S0168-1656(03)00025-7.

2. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. PMid:25005982. http://dx.doi.org/10.1016/j.foodchem.2012.03.094.

3. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products. Bioresource Technology, 87(2), 167-198. PMid:12765356. http://dx.doi.org/10.1016/S0960-8524(02)00167-0.

4. Leceta, I. A., Etxabide, L., Cabezudo, S., De La Caba, K., & Guerrero, P. (2014). Bio-based films prepared with by-products and wastes: environmental assesment. Journal of Cleaner Production, 64, 218-227. http://dx.doi.org/10.1016/j.jclepro.2013.07.054.

5. Vanin, F. M., Sobral, P. J. A., Menegalli, F. C., Carvalho, R. A., & Habitante, A. M. Q. B. (2005). Effects os plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocolloids, 19(5), 899-907. http://dx.doi.org/10.1016/j.foodhyd.2004.12.003.

6. Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690. http://dx.doi.org/10.1016/j.foodhyd.2012.08.007.

7. American Society for Testing and Materials – ASTM. (2009). Designation D882-09: standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM. Annual book of ASTM standards.

8. Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 45, 140-149. http://dx.doi.org/10.1016/j.foodhyd.2014.10.009.

9. Colla, E., Sobral, P. J. A., & Menegalli, F. C. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties. Journal of Agricultural and Food Chemistry, 54(18), 6645-6653. PMid:16939322. http://dx.doi.org/10.1021/jf0611217.

10. Mei, J., Yuan, Y., Wu, Y., & Li, Y. (2013). Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules, 57, 17-21. PMid:23500443. http://dx.doi.org/10.1016/j.ijbiomac.2013.03.003.

11. Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35-41. http://dx.doi.org/10.1016/j.foodhyd.2012.11.034.

12. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2013). Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. Journal of Food Engineering, 117(3), 350-360. http://dx.doi.org/10.1016/j.jfoodeng.2013.03.005.

13. Martucci, J. F., & Ruseckaite, R. A. (2009). Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions. Polymer Degradation & Stability, 94(8), 1307-1313. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.018.

14. Gennadios, A., & Weller, C. L. (1994). Moisture adsorption by grain protein films. Transactions of the ASAE, 37(2), 535-539. http://dx.doi.org/10.13031/2013.28109.

15. Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108-117. http://dx.doi.org/10.1016/j.foodhyd.2011.04.015.

16. Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44(4), 223-237. http://dx.doi.org/10.1080/10408690490464276.

17. Carvalho, C. W. P., Ascheri, J. L. R., & Galdeano, M. C. (2014). Filmes compostos biodegradáveis a base de amido de mandioca e proteina de soja. Polímeros: Ciência e Tecnologia, 24(5), 587-595. http://dx.doi.org/10.1590/0104-1428.1355.

18. Cozmuta, A. M., Turila, A., Apjok, R., Ciocian, A., & Cozmuta, L. M. (2015). Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocolloids, 49, 144-155. http://dx.doi.org/10.1016/j.foodhyd.2015.03.022.

19. Yang, L., & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571-578. http://dx.doi.org/10.1016/S0963-9969(00)00093-4.

20. Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chemistry, 136(3-4), 1490-1495. PMid:23194553. http://dx.doi.org/10.1016/j.foodchem.2012.09.081.

21. Garrido, T. A., Etxabide, A., Leceta, S., Cabezudo, S., de la Caba, K., & Guerrero, P. (2014). Valorization of soya by-products for sustainable packaging. Journal of Cleaner Production, 64, 228-233. http://dx.doi.org/10.1016/j.jclepro.2013.07.027.

22. Azerado, H. C. M., Mattoso, L. H. C., Avena-Bustillos, R. J., Ceotto, G., Fo., Munford, M. L., & Wood, D. (2010). Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science, 75(1), 1-7. PMid:20492188. http://dx.doi.org/10.1111/j.1750-3841.2009.01386.x.

23. Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51(2), 213-219. http://dx.doi.org/10.1016/j.jcs.2009.11.014.

24. Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155. http://dx.doi.org/10.1016/S0260-8774(00)00237-5.

25. Chiumarelli, M., & Hubinger, M. D. (2012). Stability, solubility, mechanical and barrier properties of cassava starch: Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28(1), 59-67. http://dx.doi.org/10.1016/j.foodhyd.2011.12.006.

26. Shellhammer, T. H., & Krochta, J. M. (1997). Whey protein emulsion film performance as affected by lipid type and amount. Journal of Food Science, 62(2), 390-394. http://dx.doi.org/10.1111/j.1365-2621.1997.tb04008.x.

27. Arfat, Y. A., Benjakul, S., Prodpran, T., & Osako, K. (2014). Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocolloids, 39, 58-67. http://dx.doi.org/10.1016/j.foodhyd.2013.12.028.

28. Bodini, R. B., Sobral, P. J. A., Favaro-Trindade, C. S., & Carvalho, R. A. (2013). Properties of gelatin-based films with added ethanol-propolis extract. LWT - Food Science and Technology, 51(1), 104-110. http://dx.doi.org/10.1016/j.lwt.2012.10.013.

29. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), 378-384. PMid:21640752. http://dx.doi.org/10.1016/j.ijbiomac.2011.05.013.

30. Nur Hanani, Z. A., Roos, Y. H., & Kerry, J. P. (2012). Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids, 29(1), 144-151. http://dx.doi.org/10.1016/j.foodhyd.2012.01.015.

31. Denavi, G. A., Pérez-Mateos, M., Añón, M. C., Montero, P., Mauri, A. N., & Gómez-Guillén, M. C. (2009). Structural and functional properties of soy protein isolate and cod gelatin blend films. Food Hydrocolloids, 23(8), 2094-2101. http://dx.doi.org/10.1016/j.foodhyd.2009.03.007.

32. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899-903. http://dx.doi.org/10.1111/j.1365-2621.1993.tb09387.x.

33. Dias, T. P., Grosso, C. R. F., Andreuccetti, C., Carvalho, R. A., Galicia-García, T., & Martinez-Bustos, F. (2013). Effect of the addition of soy lecithin and yucca schidigera extract on the properties of gelatin and glycerol based biodegradable films. Polímeros: Ciência e Tecnologia, 23(3), 339-345. http://dx.doi.org/10.4322/polimeros.2013.005.

34. Sobral, P. J. A., & Ocuno, D. (2000). Water vapor permeability of myofibrillar protein based films. Brazilian Journal of Food Technology, 3, 5.

35. López, O. V., & García, M. A. (2012). Starch films from a novel (Pachyrhizus ahipa) and conventional sources: development and characterization. Materials Science and Engineering, 32(7), 1931-1940. http://dx.doi.org/10.1016/j.msec.2012.05.035.

36. Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids, 27(1), 220-227. http://dx.doi.org/10.1016/j.foodhyd.2011.06.011.

37. Jiang, M., Liu, S., Du, X., & Wang, Y. (2010). Physical properties and internal microstructures of films made from catfish skin gelatin and triacetin mixtures. Food Hydrocolloids, 24(1), 105-110. http://dx.doi.org/10.1016/j.foodhyd.2009.08.011.

38. Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids, 25(5), 1085-1097. http://dx.doi.org/10.1016/j.foodhyd.2010.10.005.

39. Nuthong, P., Benjakul, S., & Prodpran, T. (2009). Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. International Journal of Biological Macromolecules, 44(2), 143-148. PMid:19059429. http://dx.doi.org/10.1016/j.ijbiomac.2008.11.006.

40. Seyedi, S., Koocheki, A., Mohebbi, M., & Zahedi, Y. (2015). Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids. International Journal of Biological Macromolecules, 77, 151-158. PMid:25795389. http://dx.doi.org/10.1016/j.ijbiomac.2015.03.005.

41. Ma, W., Tang, C. H., Yin, S. W., Yang, X. Q., Wang, Q., Liu, F., & Wei, Z. H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49(1), 572-579. http://dx.doi.org/10.1016/j.foodres.2012.07.037.

42. Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2014). Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocolloids, 41, 33-43. http://dx.doi.org/10.1016/j.foodhyd.2014.03.015.

43. Martucci, J. F., & Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polymer Degradation & Stability, 116, 36-44. http://dx.doi.org/10.1016/j.polymdegradstab.2015.03.005.
 

5b7b0c360e8825eb4e896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections