Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2357
Polímeros: Ciência e Tecnologia
Original Article

Effect of compatibiliser on the properties of polypropylene/glass fibre/nanoclay composites

Normasmira Abd Rahman; Aziz Hassan; Javad Heidarian

Downloads: 0
Views: 1098

Abstract

Abstract: Glass fibre (GF), nanoclay (NC) and hybrid composites compatibilised with maleic anhydride polypropylene (MAPP) were prepared by extrusion and injection moulding. The fourier transform infra-red spectra revealed the characteristic absorption peaks of MAPP in the compatibilised GF and NC composites. A decrement in the peak intensity of X-ray diffraction patterns of NC composite was obtained as the MAPP content increased indicating a partial exfoliation of NC. The thermogravimetric analysis showed that the incorporation of MAPP into hybrid composites reduced the thermal stability of the material. The dynamic mechanical analysis showed an increase in the storage modulus in the hybrid composites with lower content of MAPP due to the enhancement in the interfacial adhesion between the GF, NC and PP matrix.

Keywords

compatibiliser, dynamic mechanical properties, hybrid materials, thermal behavior

References

1 Gill, R. M. (1972). Carbon fibres in composite materials. London: Iliffe Books for the Plastics Institute.

2 Hassan, A., Rahman, N. A., & Yahya, R. (2011). Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA and mechanical properties. Journal of Reinforced Plastics and Composites, 30(14), 1223-1232. http://dx.doi.org/10.1177/0731684411417916.

3 Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y. W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering, 39(6), 933-961. http://dx.doi.org/10.1016/j.compositesb.2008.01.002.

4 Schwartz, M. (1992). Composite materials handbook. 2nd ed. New York: McGraw-Hill.

5 Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. T., & Kamigaito, O. (1993). Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. Journal of Polymer Science. Part A, Polymer Chemistry, 31(4), 983-986. http://dx.doi.org/10.1002/pola.1993.080310418.

6 Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research , 8(5), 1185-1189. http://dx.doi.org/10.1557/JMR.1993.1185.

7 Haque, A., Shamsuzzoha, M., Hussain, F., & Dean, D. (2003). S2-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, 37(20), 1821-1837. http://dx.doi.org/10.1177/002199803035186.

8 Giannelis, E. P. (1996). Polymer layered silicate nanocomposites. Journal of Advanced Materials, 8(1), 29-35. http://dx.doi.org/10.1002/adma.19960080104.

9 Okada, A., Fukushima, Y., Kawasumi, M., Inagaki, S., Usuki, A., & Sugiyama, S. (1988). US Patent No. 4,739,007. Japan: Toyota Motor Co.

10 Hartikainen, J., Hine, P., Szabó, J. S., Lindner, M., Harmia, T., Duckett, R. A., & Friedrich, K. (2005). Polypropylene hybrid composites reinforced with long glass fibres and particulate filler. Composites Science and Technology, 65(2), 257-267. http://dx.doi.org/10.1016/j.compscitech.2004.07.010.

11 Rahman, N. A., Hassan, A., Yahya, R., Lafia-Araga, R. A., & Hornsby, P. R. (2012). Micro-structural, thermal and mechanical properties of injection-molded glass-fiber/nanoclay/polypropylene composites. Journal of Reinforced Plastics and Composites, 31(4), 269-281. http://dx.doi.org/10.1177/0731684411435727.

12 Rahman, N. A., Hassan, A., Yahya, R., Lafia-Araga, R. A., & Hornsby, P. R. (2012). Polypropylene/glass fiber/nanoclay hybrid composites: morphological, thermal, dynamic mechanical and impact behaviors. Journal of Reinforced Plastics and Composites, 31(18), 1247-1257. http://dx.doi.org/10.1177/0731684412456445.

13 Mohan, T. P., & Kanny, K. (2011). Influence of nanoclay on rheological and mechanical properties of short glass fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 30(2), 152-160. http://dx.doi.org/10.1177/0731684410391509.

14 Cui, Y. H., Wang, X. X., Li, Z. Q., & Tao, J. (2010). Fabrication and properties of nano ZnO/glass fiber reinforced polypropylene composites. Journal of Vinyl & Additive Technology , 16(3), 189-194. http://dx.doi.org/10.1002/vnl.20231.

15 Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mechanics of Materials, 93, 134-144. http://dx.doi.org/10.1016/j.mechmat.2015.10.018.

16 American Society for Testing and Materials – ASTM. (2003). ASTM D-638: standard test method for tensile properties of plastics. West Conshohocken: ASTM. http://dx.doi.org/10.1520/D0638-03.

17 Hong, C. K., Kim, M. J., Oh, S. H., Lee, Y. S., & Nah, C. (2008). Effects of polypropylene-g-(maleic anhydride/styrene) compatibilizer on mechanical and rheological properties of polypropylene/clay nanocomposites. Journal of Industrial and Engineering Chemistry, 14(2), 236-242. http://dx.doi.org/10.1016/j.jiec.2007.11.001.

18 Tarameshlou, M., Jafari, S. H., Khonakdar, H. A., Fakhravar, A., & Farmahini-Farahani, M. (2010). PET-based nanocomposites made by reactive and remodified clays. Iranian Polymer Journal, 19(7), 521-529. Retrieved in 2015, October 11, from http://journal.ippi.ac.ir

19 Patel, H. A., Somani, R. S., Bajaj, H. C., & Jasra, R. V. (2006). Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bulletin of Materials Science, 29(2), 133-145. http://dx.doi.org/10.1007/BF02704606.

20 Kanny, K., Jawahar, P., & Moodley, V. K. (2008). Mechanical and tribological behavior of clay-polypropylene nanocomposites. Journal of Materials Science , 43(22), 7230-7238. http://dx.doi.org/10.1007/s10853-008-2938-x.

21 Lertwimolnun, W., & Vergnes, B. (2005). Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer , 46(10), 3462-3471. http://dx.doi.org/10.1016/j.polymer.2005.02.018.

22 Lee, S. Y., Kang, I. A., Doh, G. H., Kim, W. J., Kim, J. S., Yoon, H. G., & Wu, Q. H. (2008). Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polymer Letters, 2(2), 78-87. http://dx.doi.org/10.3144/expresspolymlett.2008.11.

23 Zanetti, M., Camino, G., Reichert, P., & Mülhaupt, R. (2001). Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromolecular Rapid Communications , 22(3), 176-180. http://dx.doi.org/10.1002/1521-3927(200102)22:3<176::AID-MARC176>3.0.CO;2-C.

24 Saha, A. K., Das, S., Bhatta, D., & Mitra, B. C. (1999). Study of jute fiber reinforced polyester composites by dynamic mechanical analysis. Journal of Applied Polymer Science , 71(9), 1505-1513. http://dx.doi.org/10.1002/(SICI)1097-4628(19990228)71:9<1505::AID-APP15>3.0.CO;2-1.

25 American Society for Testing and Materials – ASTM. (2003). ASTM D-790-10: standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken: ASTM. http://dx.doi.org/10.1520/ D0790-10.

26 Lee, S. H., Kim, S. Y., & Youn, J. R. (2009). Effects of maleination and heat treatment on morphology and dynamic mechanical thermal behavior of polypropylene/organoclay nanocomposites. Composites. Part A, Applied Science and Manufacturing, 40(6), 968-974. http://dx.doi.org/10.1016/j.compositesa.2009.03.013.

27 Wang, Y., Chen, F. B., Li, Y. C., & Wu, K. C. (2004). Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Composites. Part B, Engineering, 35(2), 111-124. http://dx.doi.org/10.1016/S1359-8368(03)00049-0.

28 Modesti, M., Lorenzetti, A., Bon, D., & Besco, S. (2006). Thermal behaviour of compatibilised polypropylene nanocomposite: effect of processing conditions. Polymer Degradation & Stability, 91(4), 672-680. http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.018.

29 Lai, S. M., Chen, W. C., & Zhu, X. S. (2009). Melt mixed compatibilized polypropylene/clay nanocomposites. Part 1: the effect of compatibilizers on optical transmittance and mechanical properties. Composites. Part A, Applied Science and Manufacturing, 40(6-7), 754-765. http://dx.doi.org/10.1016/j.compositesa.2009.03.006.

30 Mandal, S., & Alam, S. (2012). Dynamic mechanical analysis and morphological studies of glass/bamboo fiber reinforced unsaturated polyester resin-based hybrid composites. Journal of Applied Polymer Science, 125(S1), E382-E387. http://dx.doi.org/10.1002/app.36304.

31 Nayak, S. K., & Mohanty, S. (2010). Sisal glass fiber reinforced PP hybrid composites: effect of MAPP on the dynamic mechanical and thermal properties. Journal of Reinforced Plastics and Composites, 29(10), 1551-1568. http://dx.doi.org/10.1177/0731684409337632.

32 Chen, M., Wan, C., Shou, W., Zhang, Y., Zhang, J., & Zhang, J. (2008). Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. Journal of Applied Polymer Science, 107(3), 1718-1723. http://dx.doi.org/10.1002/app.23535.
 

5b7c53c70e8825c370896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections