Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Influence of microcrystalline cellulose in thermoplastic starch/polyester blown films

Reis, Mônica Oliveira; Olivato, Juliana Bonametti; Zanela, Juliano; Yamashita, Fabio; Grossmann, Maria Victoria Eiras

Downloads: 0
Views: 114


This work investigated the influence of microcrystalline cellulose (MCC) in thermoplastic starch/poly (butylene adipate-co-terephthalate) films produced by blown extrusion, using different MCC contents (4, 7 and 10 g.100 g-1). The films were characterised for their mechanical, structural and barrier properties. Increasing fibres concentration reduced the tensile strength (6.9 to 4.6 MPa), the elongation at break (568 to 147%) and weight loss in water (12.8 to 11.1%) of the films. The rigidity of the films increased from 19.8 MPa (without MCC) to 79.2 MPa in the samples with 10 g.100 g-1 of MCC. SEM images showed the occurrence of some agglomerates in this sample. The water vapour permeability of the films was not affected by the presence of MCC. The production of starch/PBAT/MCC films by blown extrusion was successful; however some adjustments are necessary to improve the dispersion of the particles at the polymeric matrix.


extrusion, cellulosic fibres, biodegradable films, polyester.


1. Woggum, T., Sirivongpaisal, P., & Wittaya, T. (2015). Characteristics and properties of hydroxyproprylated rice starch based biodegradable films. Food Hydrocolloids, 50, 54-64. http://dx.doi.org/10.1016/j.foodhyd.2015.04.010.

2. Mello, L. R. P. F., & Mali, S. (2010). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187-193. http://dx.doi.org/10.1016/j.indcrop.2014.02.015.

3. Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt, A. (2015). Physical and structural properties and thermal behaviour of starch-poly(Ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. http://dx.doi.org/10.1016/j.fpsl.2015.04.001.

4. Li, C., Luo, J., Qin, Z., Chen, H., Gao, Q., & Li, J. (2015). Mechanical and thermal properties of microcrystalline cellulose-reinforced soy protein isolate-gelatin eco-friendly films. Royal Society of Chemistry Advances, 5, 56518-56525. http://dx.doi.org/10.1039/c5ra04365d.

5. Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(4), 839-848. http://dx.doi.org/10.1016/j.carbpol.2010.03.051.

6. Teixeira, E. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. http://dx.doi.org/10.1016/j.carbpol.2009.04.034.

7. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7-16. http://dx.doi.org/10.1016/j.carbpol.2011.01.030.

8. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. http://dx.doi.org/10.1016/j.carbpol.2007.07.026.

9. Brandelero, R. P. H., Yamashita, F., & Grossmann, M. V. E. (2010). The effect of surfactant tween 80 on the hydrophilicity, water vapor permeation, and the mechanical properties of cassava starch and poly(butylenes adipate-co-terephthalate) (PBAT) blend films. Carbohydrate Polymers, 82(4), 1102-1109. http://dx.doi.org/10.1016/j.carbpol.2010.06.034.

10. Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2014). Effect of cooling and coating on thermoplastic starch/ poly(lactic acid) blend sheets. Polymer Testing, 33, 34-39. http://dx.doi.org/10.1016/j.polymertesting.2013.11.001.

11. Olivato, J. B., Marini, J., Pollet, E., Yamashita, F., Grossmann, M. V. E., & Avérous, L. (2015). Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 118, 250-256. PMid:25542131. http://dx.doi.org/10.1016/j.carbpol.2014.11.014.

12. Shirai, M. A., Müller, C. M. O., Grossmann, M. V. E., & Yamashita, F. (2015). Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. Journal of Polymers and the Environment, 23(1), 54-61. http://dx.doi.org/10.1007/s10924-014-0680-9.

13. Olivato, J. B., Nobrega, M. M., Muller, C. M. O., Shirai, M. A., Yamashita, F., & Grossmann, M. V. E. (2013). Mixture design applied for the study of the tartaric acid effect on starch/polyester films. Carbohydrate Polymers, 92(2), 1705-1710. PMid:23399209. http://dx.doi.org/10.1016/j.carbpol.2012.11.024.

14. Park, H. M., Li, X., Jin, C. Z., Park, C. Y., Cho, W. J., & Ha, C. S. (2002). Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromolecular Materials and Engineering, 287(8), 553-558. http://dx.doi.org/10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3.

15. Follain, N., Joly, C., Dole, P., Roge, B., & Mathlouthi, M. (2006). Quaternary starch based blends: influence of fourth component addition to the starch/water/glycerol system. Carbohydrate Polymers, 63(3), 400-407. http://dx.doi.org/10.1016/j.carbpol.2005.09.008.

16. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydrate Polymers, 77(2), 293-299. http://dx.doi.org/10.1016/j.carbpol.2008.12.030.

17. Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydrate Polymers, 109, 171-179. PMid:24815414. http://dx.doi.org/10.1016/j.carbpol.2014.03.044.

18. Sun, X., Lu, C., Liu, Y., Zhang, W., & Zhang, X. (2014). Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydrate Polymers, 101, 642-649. PMid:24299821. http://dx.doi.org/10.1016/j.carbpol.2013.09.088.

19. Oliveira, T. G., Makishi, G. L. A., Chambi, H. N. M., Bittante, A. M. Q. B., Lourenço, R. V., & Sobral, P. J. A. (2015). Cellulose fiber reinforced biodegradable films based on proteins extracted from castor bean (Ricinus communis L.) cake. Industrial Crops and Products, 67, 355-363. http://dx.doi.org/10.1016/j.indcrop.2015.01.036.

20. Venables, A. C., Buliga, G. S., Dell, S. M., & Colliopoulos, J. A. (2000). US Patent 6,037,380. Ultra-fine microcrystalline cellulose compositions process. Philadelphia: FMC Corporation.

21. Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. http://dx.doi.org/10.1002/app.21779.

22. Bemiller, J. N., & Huber, K. C. (2010). Carboidratos. In S. Damodaran, K. L. Parkin & O. R. Fennema. Química de alimentos de Fennema (4th ed., pp. 75-130). Porto Alegre: Artmed.

23. Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline celulose. Carbohydrate Polymers, 98(1), 139-145. PMid:23987327. http://dx.doi.org/10.1016/j.carbpol.2013.05.069.

24. Reis, M. O., Zanela, J., Olivato, J., Garcia, P. S., Yamashita, F., & Grossmann, M. V. E. (2014). Microcrystalline cellulose as reinforcement in thermoplastic starch/poly(butylene adipate-co-terephthalate) films. Journal of Polymers and the Environment, 22(4), 545-552. http://dx.doi.org/10.1007/s10924-014-0674-7.

25. Rafiee, Z., & Keshavarz, V. (2015). Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Progress in Organic Coatings, 86, 190-193. http://dx.doi.org/10.1016/j.porgcoat.2015.05.013.

26. American Society for Testing and Material – ASTM. (2002). D882-02: standard test methods for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.

27. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2011). Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products, 33(3), 605-610. http://dx.doi.org/10.1016/j.indcrop.2010.12.021.

28. American Society for Testing and Material – ASTM. (1996). E96-00: standard test methods for water vapor transmission of materials. West Conshohocken: ASTM.

29. Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. PMid:24751025. http://dx.doi.org/10.1016/j.carbpol.2012.05.009.

30. Samir, M. A. S. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626. PMid:15762621. http://dx.doi.org/10.1021/bm0493685.

31. Ibrahim, M. M., El-Zawawy, W. K., & Nassar, M. A. (2010). Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydrate Polymers, 79(3), 694-699. http://dx.doi.org/10.1016/j.carbpol.2009.09.030.

32. Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375. http://dx.doi.org/10.1016/j.carbpol.2007.09.002.

33. Kristo, E., & Biliaderis, C. G. (2007). Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydrate Polymers, 68(1), 146-158. http://dx.doi.org/10.1016/j.carbpol.2006.07.021.

34. Dogan, N., & McHugh, T. H. (2007). Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. Journal of Food Science, 72(1), 16-22. PMid:17995880. http://dx.doi.org/10.1111/j.1750-3841.2006.00237.x.

35. Kunanopparat, T., Menut, P., Morel, M.-H., & Guilbert, S. (2008). Reinforcement of plasticized wheat gluten with natural fibers: from mechanical improvement to deplasticizing effect. Composites. Part A, Applied Science and Manufacturing, 39(5), 777-785. http://dx.doi.org/10.1016/j.compositesa.2008.02.001.

36. Ma, X., Yu, J., & Kennedy, J. F. (2005). Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydrate Polymers, 62(1), 19-24. http://dx.doi.org/10.1016/j.carbpol.2005.07.015.

37. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333. http://dx.doi.org/10.1016/j.foodhyd.2008.09.002.

38. Silva, R., Haraguchi, S. K., Muniz, E. C., & Rubira, A. F. (2009). Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Química Nova, 32(3), 661-671. http://dx.doi.org/10.1590/S0100-40422009000300010.

39. Santos, F. A., & Tavares, M. I. B. (2013). Preparo e caracterização de filmes obtidos a partir de poli (ácido lático) e celulose microcristalina. Polímeros: Ciência e Tecnologia, 23(2), 229-235. http://dx.doi.org/10.1590/S0104-14282013005000021.

5b7b0b140e8825c74c896e52 polimeros Articles
Links & Downloads


Share this page
Page Sections