Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.2267
Polímeros: Ciência e Tecnologia
Original Article

Nanostructured magnetic alginate composites for biomedical applications

Bedê, Pedro Marins; Silva, Marcelo Henrique Prado da; Figueiredo, André Bem-Hur da Silva; Finotelli, Priscilla Vanessa

Downloads: 0
Views: 61

Abstract

This is a study of the preparation and characterization of polymeric-magnetic nanoparticles. The nanoparticles used were magnetite (Fe3O4) and the chosen polymers were alginate and chitosan. Two types of samples were prepared: uncoated magnetic nanoparticles and magnetic nanoparticles encapsulated in polymeric matrix. The samples were analyzed by XRD, light scattering techniques, TEM, and magnetic SQUID. The XRD patterns identified magnetite (Fe3O4) as the only crystalline phase. TEM analyses showed particle sizes between 10 and 20nm for magnetite, and 15 and 30nm for the encapsulated magnetite. The values of magnetization ranged from 75 to 100emu/g for magnetite nanoparticles, and 8 to 12emu/g for coated with chitosan, at different temperatures of 20K and 300K. The saturation of both samples was in the range of 49 to 50KOe. Variations of results between the two kinds of samples were attributed to the encapsulation of magnetic nanoparticles by the polymers.

Keywords

alginate, chitosan, composite, nanoparticles, magnetic.

References

1. Kumar, R. (2000). Nano and microparticles as controlled drug delivery devices. Journal of Pharmacy & Pharmaceutical Sciences, 3(2), 234-258. PMid:10994037.

2. Zhao, D., Zeng, X., Xia, Q., & Tang, J. (2006). Inductive heat property of Fe,O, nanoparticles in AC magnetic field for local hyperther mia. Rare Metals, 25(6), 621-625. http://dx.doi.org/10.1016/S1001-0521(07)60159-4.

3. Atsumi, T., Jeyadevanb, B., Satob, Y., & Tohji, K. (2007). Heating efficiency of magnetite particles exposed to AC magnetic field. Journal of Magnetism and Magnetic Materials, 310(2), 2841-2843. http://dx.doi.org/10.1016/j.jmmm.2006.11.063.

4. Jordan, A., Scholz, R., Wust, P., Fähling, H., & Roland Felix (1999). Magnetic fluid hyperthermia: cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201(1-3), 413-419. http://dx.doi.org/10.1016/S0304-8853(99)00088-8.

5. Kim, D. H., Lee, S. H., Im, K. H., Kim, K. N., Kim, K. M., Shim, I. B., Lee, M. H., & Lee, Y.-K. (2006). Surface-modified magnetite nanoparticles for hyperthermia: preparation, characterization, and cytotoxicity studies. Current Applied Physics, 6(S1), 242-246. http://dx.doi.org/10.1016/j.cap.2006.01.048.

6. Sidhu, P. S., Gilkes, R. J., & Posner, A. M. (1978). The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites. Journal of Inorganic and Nuclear Chemistry, 40(3), 429-435. http://dx.doi.org/10.1016/0022-1902(78)80418-7.

7. Boisseson, M. R., Leonard, M., Hubert, P., Marchal, P., Stequeart, A., Castel, C., Favre, E., & Dellacherie, E. (2004). Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. Journal of Colloid and Interface Science, 273(1), 131-139. PMid:15051442. http://dx.doi.org/10.1016/j.jcis.2003.12.064.

8. Iskakov, R. M., Kikuchi, A., & Okano, T. (2002). Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers. Journal of Controlled Release, 80(1-3), 57-68. PMid:11943387. http://dx.doi.org/10.1016/S0168-3659(01)00551-X.

9. Shao, F., Ankur, T., Diana, M. S., Riccardo, L. B., Ira, S. B., Sachin, V., Eric, J. M., & Lawrence, H. B. (2011). Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech, 12(2), 453-460. PMid:21437788. http://dx.doi.org/10.1208/s12249-011-9587-0.

10. Finotelli, P. V. (2006). Microcápsulas de alginato contendo nanopartículas magnéticas para liberação controlada de insulina (Tese de doutorado). Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

11. Kulkamp, I. C., Paese, K., Guterres, S. S., & Pohlmann, A. R. (2009). Estabilização do ácido lipoico via encapsulação em nanocápsulas poliméricas planejadas para aplicação cutânea. Quimica Nova, 32(8), 2078-2084. http://dx.doi.org/10.1590/S0100-40422009000800018.

12. Ma, H., Qi, X. R., Maitani, Y., & Nagai, T. (2007). Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. International Journal of Pharmaceutics, 333(1-2), 177-186. PMid:17074454. http://dx.doi.org/10.1016/j.ijpharm.2006.10.006.

13. Ahmad, Z., Pandey, R., Sharma, S., & Khuller, G. K. (2006). Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. International Journal of Antimicrobial Agents, 27(5), 409-416. PMid:16624533. http://dx.doi.org/10.1016/j.ijantimicag.2005.12.009.

14. Denizot, B., Tanguy, G., Hindre, F., Rump, E., & Jeune, J. J. L. & Jallet, P. (1999). Phosphorylcholine coating of iron oxide nanoparticles. Journal of Colloid and Interface Science, 209(1), 66-71. PMid:9878137. http://dx.doi.org/10.1006/jcis.1998.5850.

5b7c14f60e8825b505896e53 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections