Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2249
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Nanopartículas de sílica silanizada como compatibilizante em compósitos de fibras de sisal/polietileno

Silanized silica nanoparticles as compatibilizer of sisal fibers/polyethylene composites

Fernandes, Janaina Rodriguesx; Moisés, Murilo Pereirax; Girotto, Emerson Marcelo; Favaro, Silvia Lucianax; Radovanovic, Eduardo

Downloads: 0
Views: 1054

Resumo

Foi discutida neste estudo a influência de nanopartículas de sílica na compatibilidade entre fibras de sisal e polietileno de alta densidade, utilizados na preparação de compósitos. As fibras de sisal foram tratadas quimicamente e recobertas com nanopartículas de sílica por moagem mecânica. Os compósitos foram preparados por extrusão do polietileno com diferentes quantidades de fibras. Utilizou-se diferentes técnicas de caracterização para se obter as propriedades térmicas e a morfologia das fibras de sisal e dos compósitos, a influência das fibras de sisal e da sílica na cristalinidade do polietileno e o comportamento mecânico e a absorção de água do polietileno e dos compósitos. Foi observado que a as propriedades térmicas do polietileno não são afetadas pela presença das fibras e nanopartículas. Os diferentes tratamentos químicos e a presença de sílica nas fibras de sisal resultaram em propriedades mecânicas melhoradas e foram preponderantes para a diminuição da absorção de água nos compósitos, comparados ao polietileno.

Palavras-chave

compósitos, compatibilização, nanopartícula de sílica silanizada, fibras de sisal, propriedades mecânicas.

Abstract

In this study, the influence of silanized silica nanoparticles on the compatibility of composites prepared with sisal fibers and high density polyethylene is discussed. The sisal fibers were chemically treated and covered with silica nanoparticles by mechanical milling. The composites were prepared by extrusion of HDPE and different amount of fibers. The morphology and thermal properties of the sisal fibers and composites, the influence of sisal fibers and silica nanoparticles on crystallinity of HDPE, the mechanical behavior and water uptake of composites were evaluated by different techniques. It was observed that thermal properties of HDPE on composites were not changed by the presence of sisal fibers and silica nanoparticles. The different chemical treatments in sisal fibers and the presence of silica nanoparticles resulted in improved mechanical properties and were preponderant to the water uptake decrease in the composites, comparing with HDPE.

Keywords

composites, compatibilization, silanized silica nanoparticle, sisal fibers, mechanical properties.

References

1. Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites. Composites. Part A, Applied Science and Manufacturing, 35(3), 371-376. http://dx.doi.org/10.1016/j.compositesa.2003.09.016.

2. Matheus, V. G., Zimmermann, T. C., Turella, A. J., & Ruth, M. C. S. (2014). Influência do tratamento químico da fibra de bananeira em compósitos de Poli(etileno-co-acetato de vinila) com e sem agente de expansão. Polímeros: Ciência e Tecnologia, 24(1), 58-64. http://dx.doi.org/10.4322/polimeros.2014.047.

3. Araújo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polymer Degradation & Stability, 93(10), 1770-1775. http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.021.

4. Palova, S. B., Lawrence, L. V., Ricardo, B., Daniela, B. V. S., Antonio, R. Jr, & Murilo, B. F. (2007). Estudo das propriedades mecânicas de um composto de PVC modificado com fibras de bananeira. Polímeros: Ciência e Tecnologia, 17(1), 1-4. http://dx.doi.org/10.1590/S0104-14282007000100004.

5. Gomes, A., Matsuo, T., Goda, K., & Ohgi, J. (2007). Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites. Part A, Applied Science and Manufacturing, 38(8), 1811-1820. http://dx.doi.org/10.1016/j.compositesa.2007.04.010.

6. Pickering, S. J. (2006). Recycling technologies for thermoset composite materials — current status. Composites. Part A, Applied Science and Manufacturing, 37(8), 1206-1215. http://dx.doi.org/10.1016/j.compositesa.2005.05.030.

7. Patel, M. (2002). Sustainable additives. In A. Netravalli & C. M. Pastore (Ed.), Sustainable composites; fibbers, resins and applications (pp. 117-140). Lancaster: DEStech Publications, Inc.

8. Varghese, S., Kuriakose, B., Thomas, S., & Joseph, K. (1995). Effect of adhesion on the equilibrium swelling of short sisal fiber reinforced natural rubber composites. Rubber Chemistry and Technology, 68(1), 37-49. http://dx.doi.org/10.5254/1.3538730.

9. Samir, M. A. S. A., Alloin, F., & Dufresne, A. (2006). High performance nanocomposite polymer electrolytes. Composite Interfaces, 13(4), 545-559. http://dx.doi.org/10.1163/156855406777408656.

10. Cincotto, M. A., Agopyan, V., & John, V. M. (1990). Optimization of rice husk ash production. In H. S. Sobral (Ed.), Vegetable plants and their fibers as building materials (pp. 334-342). London: Chapman and Hall.

11. Margem, J. I., Margem, F. M., Simonassi, N. T., Loyola, R. L., & Monteiro, S. N. (2012). Infra-red spectroscopy analysis of malva fibers. In 20º Anais do Congresso Brasileiro de Engenharia e Ciência dos Materiais (pp. 4157-4164). São Paulo: Metallum.

12. Li, Y., Mai, Y.-W., & Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Composites Science and Technology, 60(11), 2037-2055. http://dx.doi.org/10.1016/S0266-3538(00)00101-9.

13. Sangthong, S., Pongprayoon, T., & Yanumet, N. (2009). Mechanical property improvement of insaturated polyester composite reinforced with admicellar treated sisal fibers. Composites. Part A, Applied Science and Manufacturing, 40(6), 687-694. http://dx.doi.org/10.1016/j.compositesa.2008.12.004.

14. Gatenholm, P., & Felix, J. (1993). Methods for improvement of properties of cellulose-polymer composites. In M. P. Wolcott. Wood fiber/polymer composites: fundamental concepts, process, and material options (pp. 57-62). Madison: Forest Product Society.

15. Ramzy, A., Beermann, D., Steuernagel, L., Meiners, D., & Ziegman, G. (2014). Developing a new generation of sisal composite fibres for use in industrial applications. Composites. Part B, Engineering, 66, 287-298. http://dx.doi.org/10.1016/j.compositesb.2014.05.016.

16. Friedrich, K., Rong, M. Z., Zhang, M. Q., & Ruan, W. H. (2006).Preparation of nano-silica/ polypropylene composites using reactive compatibilization. Key Engineering Materials, 312, 229-232. http://dx.doi.org/10.4028/www.scientific.net/KEM.312.229.

17. Dongli, L., Wencai, X., Yabo, F., & Wei, S. (2013). The effect of nano-silica on rheological behavior and toughness of modified polypropylene. Advanced Materials Research, 631, 592-597. http://dx.doi.org/10.4028/www.scientific.net/AMR.631-632.592.

18. Fang, L., Zhenqing, W., Wenyan, L., & Yongwei, Q. (2012). Effect of nano-silica on flexural properties of epoxy resin. Advanced Materials Research, 383, 3845-3848. http://dx.doi.org/10.4028/www.scientific.net/AMR.383-390.3845.

19. Silva, O. R., & Beltrão, N. E. M. (1999). O agronegócio do sisal no Brasil. Brasília: Embrapa SPI.

20. Bledzki, A. K., & Gassan, I. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221-274. http://dx.doi.org/10.1016/S0079-6700(98)00018-5.

21. Chalk, A. J., & Harrod, J. F. (1965). Homogeneous catalysis. II. The mechanism of the hydrosilation of olefins catalyzed by group VIII metal complexes. Journal of the American Chemical Society, 87(1), 16-21. http://dx.doi.org/10.1021/ja01079a004.

22. Suslick, K. S., Hammerton, D. A., & Clinc, R. E. (1986). Sonochemical hot spot. Journal of the American Chemical Society, 108(18), 5641-5642. http://dx.doi.org/10.1021/ja00278a055.

23. Barkakaty, B. C. (1976). Some structural aspects of sisal fibers. Journal of Applied Polymer Science, 20(11), 2921-2940. http://dx.doi.org/10.1002/app.1976.070201101.

24. Peraza, S. S. R. (1986). Obtención de carboximetilcelulosa a partir de la celulosa que se extrae de la fibra de henequén (Master’s thesis). UADY, México.

25. Farrow, G. (1961). The measurement of crystallinity in polypropylene fibres by X-ray diffraction. Polymer, 2, 409-417. http://dx.doi.org/10.1016/0032-3861(61)90046-5.

26. Srinivasa Reddy, C., & Kumar Das, C. (2006). Polypropylene–nanosilica-filled composites: effects of epoxy-resin-grafted nanosilica on the structural, thermal, and dynamic mechanical properties. Journal of Applied Polymer Science, 102(3), 2117-2124. http://dx.doi.org/10.1002/app.24131.

27. Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Campos, A., Marconcini, J. M., & Mattoso, L. H. C. (2011). Whiskers from sisal fibers obtained under different acid hydrolysis conditions: effect of time and temperature of extraction. Polímeros: Ciência e Tecnologia, 21(4), 280-285.

28. Asuke, F., Aigbodion, V. S., Abdulwahab, M., Fayomi, O. S. I., Popoola, A. P. I., Nwoyi, C. I., & Garba, B. (2012). Effects of bone particle on the properties and microstructure os polypropylene/bone ash particulate composites. Results in Physics, 2, 135-141. http://dx.doi.org/10.1016/j.rinp.2012.09.001.

29. Ramos, S. M. L. S., Carvalho, L. H., Spieth, E., & Rivadula, R. S. M. (1993). Efeitos da estabilização do Polipropileno nas propriedades térmicas, mecânicas e termo-mecânicas de compósitos de Polipropileno/Atapulgita. Polímeros: Ciência e Tecnologia, 3(4), 26-31.

5b7ac8be0e88254171896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections